Смекни!
smekni.com

Нооэнергетика для общества будущего (стр. 2 из 3)

Физики, заботясь об уменьшении количества опасных вторичных отходов, небезосновательно считали лучшими реакции синтеза легких элементов (изотопов водорода и гелия) в более тяжелые. Эта сложная задача была успешно решена еще в 1992 году учеными Великобритании, достигшими энергетически выгодного уровня реакции (выделение энергии превысило ее затраты на нагревание плазмы). Но этот успех имел неожиданные последствия - серию заказных критических статей тех ученых, кто согласился составить большой список недостатков имеющегося оборудования. На этой основе правительство Великобритании, как и руководители других государств, отказались рассматривать термоядерный энергетический путь приоритетным и резко сократили финансирование.

Наиболее логичное объяснение этих действий - влияние на правительства руководителей нефтегазовых компаний, которые в мощных и экологически безопасных термоядерных реакторах справедливо усматривали угрозу возможности постоянно увеличивать цену нефти. Хотя в 2005 г. страны „большой восьмерки” и подписали соглашение о совместном финансировании сооружения опытного термоядерного реактора (ITER), но организовали такой хитрый менеджмент, что к моменту планового окончания постройки не завершили бетонирования основания. Нет сомнений - политика скрытого торможения проекта ITER имеет колоссальные успехи. Даже самые оптимистически настроенные в прошлом физики (как лидер российской части проекта академик РАН Е. Велихов) уже потеряли надежду увидеть реактор не только при своей жизни, но хотя бы в конце ХХІ века.

Но особо печалиться по этому поводу, в сущности, нечего – идея ITER более чем вероятно может оказаться просто ненужной и остаться забавным эпизодом в истории наук и технологий. Это может случиться по той причине, что ученые успели предложить много новых способов получения энергии, некоторые из которых способны стать доминирующими.

Лучшее из возможных средств - полупроводниковые фотоэлементы, непосредственно превращающие поток прямых лучей Солнца в электрический ток. Этот путь очень уменьшает опасность чрезмерного перегревания атмосферы. Поглощая солнечные лучи и создавая электричество, они изымают часть тепла, нагревающего поверхность планеты в знойных и безоблачных пустынях. Конечно, использование полученного электричества завершится нагреванием среды умеренных и населенных широт, но этим тепловой баланс Земли не нарушится - он будет оставаться таким же, как сейчас.

В принципе, фотоэлементы давно интересовали ученых, но главный поток государственных заказов направлялся на создание энергетического обеспечения космических станций с экипажами, где нельзя было использовать ядерно-изотопные источники энергии. Для темы статьи исключительно интересной оказывается таблица 1, которую в своем журнале «Энергия» разместили ученые Российской академии наук, опираясь на совокупность данных европейских источников [8]. Она является примером сравнения тех финансовых затрат, которые необходимо вложить сперва в создание того или другого источника энергии, а позже - израсходовать на поддержку его в рабочем состоянии.

Таблица 1. Сравнительная стоимость разных видов энергии

Технология Капитальные затраты (евро/кВт мощности) Операционные затраты (евро/кВт мощности)
Газовые турбины открытого цикла 200-300 6-13
Комбинированные газовые турбины 480-740 19-26
То же, с системой улавливания и хранения углерода 1000-1305 36-44
Пульверизированный уголь 1000-1450 49-67
То же, с системой улавливания и хранения углерода 1600-2700 75-102
Уголь: комплексная газификация, комбинированный цикл 1410-1650 61-70
То же, с системой улавливания и хранения углерода 1700-2410 74-107
Ядерная энергия 1970-3380 74-107
Ветряные станции (на суше) 1000-1380 33-42
Ветряные станции (на море) 1740-2750 71-104
Крупные гидростанции 900-4500 41-75
Небольшие гидростанции 2000-6530 86-130
Солнечный фотосинтез 4100-6890 72-115
Биомасса 2030-5080 123-293
Биогаз 2960-5800 123-293
Свалочный (landfill) газ 1410-2000 199-210

Создается впечатление, что творцы этой таблицы принадлежат к пылким приверженцам ветроэнергетики, акцентируя небольшой максимальный уровень капитальных затрат на установки, сооружаемые на суше. Наоборот, для устройств солнечного фотогенерирования почти все показатели оказываются рекордно высокими (включая и обслуживание).

Эта точка зрения является доминирующей. Например, украинский эксперт по энергетическим проблемам С.Гончаров в довольно объективной статье об альтернативных источниках энергии наибольшее ударение делает на том, что солнечная электроэнергия остается весьма дорогой. Он указывает: «Из вычислений, которые проводились в процессе разработки Энергетической стратегии Украины, вытекает, что средняя себестоимость создания 1 кВт мощности гелиоэлектрогенерации будет составлять у нас не меньше 9000 долларов США (в ценах 2000 г.), что в 4 раза превышает показатели АЭС и в 5, 5 раз - ТЭС. Даже в наилучших современных СЕС полная стоимость производства электроэнергии еще ни разу не снизилась за границу 250% стоимости традиционной генерации» [1].

Неторопливость деятельности ученых и производственников США, Европы или России в теме «создание СЕС» тоже можно объяснить тормозящим влиянием правительственных структур на распределение бюджетных средств на те или другие проекты (например, успехи «ветряков» в Дании или Германии вызваны именно законодательной стимуляцией и выделением целевых субсидий). Если же аккуратно вычислить затраты на замену ими всех ТЭС и АЭС, то окажется - речь идет о настоящем и грандиозном растранжиривании материалов и финансов «на ветер». Да и просто не слишком разумно улавливать ничтожную долю солнечного излучения, преобразованного неравномерным нагреванием поверхности Земли в потоки воздуха. Гораздо выгоднее непосредственно преобразовать лучистую энергию в электрический ток с несравненно более высоким КПД.

Итак, несколько раз в анализе путей решения энергетических проблем человечества мелькали «уши» погрязших в консерватизме стран-лидеров. Но современный мир – это не только США и даже не «восьмерка». Есть еще и Китай, способный лет через 10 в объемах производства обогнать не только США, но до всех мыслимых пределов объединенную Европу. Довольно независимо действует не только он, но и Индия, Бразилия и та же Нигерия.

Руководство Китая отлично использовало мировой кризис 2008 года и после него осуществило ряд шагов, резко снизивших информационно-прогностическую ценность табл. 1 и высказываний С. Гончарова. Сперва Китай ликвидировал в США производство редкоземельных элементов путем предложения намного более дешевой продукции, а позже почти мгновенно монополизировал еще и мировой рынок солнечных фотопанелей за счет рекордно низких цен.

Процитируем специалистов: «2011 год для солнечной энергетики был отмечен поистине драматическим событием: резким снижением цен на «солнечное» электричество, из-за которого, с одной стороны, рухнули бизнеспланы множества компаний, а с другой — появилась реальная возможность выхода технологий прямого (фотоэлектрического) преобразования солнечной энергии на финишную прямую — к масштабной энергетике. А значит, к серьезным, в том числе и политическим, изменениям в окружающем мире... Китайцы просто купили существующие технологии кремниевых фотоэлементов и стали строить заводы в больших количествах. Китайские компании вышли на первое место с кремниевыми солнечными батареями, обеспечивающими цену пиковой электрической мощности на уровне 1000 долл./кВт.» [2]

Без сомнений - это восхитительное достижение (противоположное мнение имеют менеджеры с рухнувшими бизнес-планами), ускорившее предусмотренное на интервал 2015-2020-х годов преобразование солнечной энергетики в конкурента традиционной. Китайские цены на кремниевые фотоэлементы, как следует из табл. 1, дают возможность сооружать почти такие же дешевые энергетические центры, как турбинные ТЭС на природном газе.

Очевидно - идеальным вариантом было бы сооружение всемирной сети солнечных электростанций в Сахаре, пустынях и полупустынях Азии, Австралии и Америки. Освещенная Солнцем часть этой сети должна питать энергией «затемненных» потребителей. Именно этот путь ликвидирует необходимость строить невероятного размера и стоимости средства для обеспечения равномерности использования энергии не только в светлую, но и в темную часть суток.

Но в этом случае возникает проблема прокладки электрических линий глобальной длины через океаны, моря и территории большинства государств мира. Уверенность в возможности решения этой задачи предоставляют нам немецкие ученые и инженеры, которые первыми в мире создали технологически выгодный сверхпроводящий электрический кабель большой мощности, заполненный не дорогим жидким гелием, а в полсотни раз более дешевым сжиженным азотом.

В случае политических договоренностей и использования достаточных ресурсов мировой кластер СЕС окажется узлами «умной» электрической сети, которая без потерь мощности на нагревание кабелей предоставит энергию всем потребителям на Земле. Мечты фантастов середины ХХ века об энергетическом «рае» на планете объединенное человечество может осуществить на основе тех технологий, которые уже существуют в данный момент, но имеют весьма ограниченное применение.