Смекни!
smekni.com

Проблема исследования времени (стр. 2 из 4)

Другое замечательное следствие из постулата относительности – революция в наших представлениях о пространстве и времени. По теории Ньютона, если световой импульс послан из одной точки в другую, то время его прохождения, измеренное разными наблюдателями, будет одинаковым (поскольку время абсолютно), но пройденный им путь может оказаться разным у разных наблюдателей (так как пространство не является абсолютным). И поскольку скорость света есть пройденное светом расстояние, деленное на время, разные наблюдатели будут получать разные скорости света. В теории относительности же все наблюдатели должны быть согласны в том, с какой скоростью распространяется свет. И коль скоро у них нет согласия в вопросе о расстоянии, пройденном светом, у них не должно быть согласия и в том, сколько времени шел свет. (Время прохождения – это пройденное светом расстояние, относительно которого нет согласия у наблюдателей, деленное на скорость света, относительно которой все согласны). Иными словами, теория относительности покончила с понятием абсолютного времени! Оказалось, что у каждого наблюдателя должен быть свой масштаб времени, измеряемого с помощью имеющихся у него часов, и что показания одинаковых часов, находящихся у разных наблюдателей, не обязательно согласуются.

Всякий наблюдатель может определить, где и когда произошло какое-нибудь событие, методом радиолокации, послав световой импульс или импульс радиоизлучения. Часть посланного сигнала в конце пути отразится назад, и наблюдатель измерит время возврата эхо-сигнала. Временем события будет середина интервала между посылкой сигнала и его возвращением: расстояние до события равно половине времени, затраченного на прохождение туда и обратно, умноженной на скорость света. (Под событием здесь понимается нечто, происходящее в определенной точке пространства в определенный момент времени).

При изложенном методе наблюдатели, перемещающиеся относительно друг друга, припишут одному и тому же событию разное время и положение в пространстве. Ни одно из измерений, произведенных разными наблюдателями, не будет правильнее других, но все они будут связаны между собой. Каждый наблюдатель может точно вычислить, какое время, и какое положение в пространстве припишет событию любой другой наблюдатель, если известна скорость второго наблюдателя относительно первого.

Для точного определения расстояний сейчас пользуются именно таким методом, потому что время мы умеем измерять точнее, чем длину. Теперь не нужно вводить эфир, присутствие которого, кстати, как показал опыт Майкельсона - Морли, и невозможно обнаружить. Однако теория относительности вынуждает нас к фундаментальной смене представлений о пространстве и времени. Нам приходится принять, что время не отделено полностью от пространства и не независимо от него, но вместе с ним образует единый объект, который называется пространством-временем.

В теории относительности нет реального различия между пространственными и временными координатами, как нет различия между двумя любыми пространственными координатами. Можно перейти к новой системе координат, в которой, скажем, первая пространственная координата будет комбинацией первой и второй старых пространственных координат. Например, вместо того чтобы задавать положение точки на поверхности Земли, измеряя в километрах расстояние до нее к северу и к западу от какой-то площади A, можно было бы откладывать расстояние от той же площади A, но к северо-востоку и к северо-западу. Аналогичным образом в теории относительности можно ввести новую временную координату, которая была бы равна сумме старого времени (измеренного в секундах) и расстояния (в световых секундах) к северу от Площади A. Четыре координаты какого-либо события можно рассматривать как координаты, определяющие положение этого события в четырехмерном пространстве, которое называется пространством-временем.

Специальная теория относительности позволила объяснить постоянство скорости света для всех наблюдателей (установленное в опыте Майкельсона и Морли) и правильно описывала, что происходит при движении со скоростями, близкими к скорости света. Однако новая теория противоречила теории гравитации Ньютона, согласно которой объекты притягиваются друг к другу с силой, зависящей от расстояния между ними. Последнее означает, что, если сдвинуть один из объектов, сила, действующая на другой, изменится мгновенно. Иначе говоря, скорость распространения гравитационных эффектов должна быть бесконечной, а не равной (или меньшей) скорости света, как того требовала теория относительности. С 1908 по 1914 г. Эйнштейн предпринял ряд безуспешных попыток построить такую модель гравитации, которая согласовалась бы со Специальной теорией относительности. Наконец в 1915 г. он опубликовал теорию, которая сейчас называется Общей теорией относительности. Эйнштейн высказал предположение революционного характера: гравитация – это не обычная сила, а следствие того, что пространство-время не является плоским, как считалось раньше; оно искривлено распределенными в нем массой и энергией. Такие тела, как Земля, вовсе не принуждаются двигаться по искривленным орбитам гравитационной силой; они движутся по линиям, которые в искривленном пространстве более всего соответствуют прямым в обычном пространстве и называются геодезическими. Геодезическая линия – это самый короткий (или самый длинный) путь между двумя соседними точками. Например, поверхность Земли есть искривленное двумерное пространство. Геодезическим на Земле называется большой круг, который и является самым коротким путем между двумя точками. Поскольку самый короткий путь между двумя аэропортами – по геодезический, диспетчеры всегда задают пилотам именно такой маршрут. Согласно общей теории относительности, тела всегда перемещаются по прямым в четырехмерном пространстве-времени, но мы видим, что в нашем трехмерном пространстве они движутся по искривленным траекториям. В этом можно убедиться, например, понаблюдав за самолетом над холмистой местностью. Сам он летит прямо в трехмерном пространстве, а его тень перемещается по кривой на двумерной поверхности Земли. Масса Солнца так искривляет пространство-время, что, хотя Земля движется прямо в четырехмерном пространстве, мы видим, что в нашем трехмерном пространстве она движется по круговой орбите. Орбиты планет, предсказываемые Общей теорией относительности, почти совпадают с предсказаниями Теории тяготения Ньютона. Однако в случае Меркурия, который, будучи ближайшей к Солнцу планетой, испытывает самое сильное действие гравитации и имеет довольно вытянутую орбиту, Общая теория относительности предсказывает, что большая ось эллипса должна поворачиваться вокруг Солнца примерно на один градус в десять тысяч лет. Несмотря на его малость, этот эффект был замечен еще до 1915 г. и рассматривался как одно из подтверждений теории Эйнштейна. В последние годы радиолокационным методом были измерены еще меньшие отклонения орбит других планет от предсказаний Ньютона, и они согласуются с предсказаниями Общей теории относительности.

Лучи света тоже должны следовать геодезическим линиям в пространстве-времени. Искривленность пространства означает, что свет уже не распространяется прямолинейно. Таким образом, согласно обшей теории относительности, луч света должен изгибаться в гравитационных полях, и, например, световые конусы точек, находящихся вблизи Солнца, должны быть немного деформированы под действием массы Солнца. Это значит, что луч света от далекой звезды, проходящий рядом с Солнцем, должен отклониться на небольшой угол, и наблюдатель, находящийся на Земле, увидит эту звезду в другой точке. Конечно, если бы свет от данной звезды всегда проходил рядом с Солнцем, мы не могли бы сказать, отклоняется ли луч света или же звезда действительно находится там, где мы ее видим. Но вследствие обращения Земли все новые звезды заходят за солнечный диск, и их свет отклоняется. В результате их видимое положение относительно остальных звезд меняется. В нормальных условиях этот эффект очень труден для наблюдения, так как яркий солнечный свет не позволяет видеть звезды, находящиеся на небе рядом с Солнцем. Но такая возможность появляется во время солнечного затмения, когда Луна перекрывает солнечный свет. В 1915 г. английская экспедиция в Западной Африке, наблюдавшая там солнечное затмение, показала, что свет действительно отклоняется Солнцем так, как и предсказывала теория. Впоследствии отклонение света Солнцем было точно подтверждено целым рядом наблюдений. Еще одно предсказание общей теории относительности состоит в том, что вблизи массивного тела типа Земли время должно течь медленнее. Это следует из того, что должно выполняться определенное соотношение между энергией света и его частотой (т. с. числом световых волн в секунду): чем больше энергия, тем выше частота. Если свет распространяется вверх в гравитационном поле Земли, то он теряет энергию, а потому его частота уменьшается. (Это означает, что увеличивается интервал времени между гребнями двух соседних волн). Наблюдателю, расположенному на большой высоте, должно казаться, что внизу все происходит медленнее. Это предсказание было проверено в 1962 г. с помощью двух очень точных часов, расположенных: одни на самом верху водонапорной башни, а вторые – у ее подножья. Оказалось, что нижние часы, которые были ближе к Земле, в точном соответствии с общей теорией относительности шли медленнее. Разница в ходе часов на разной высоте над поверхностью Земли приобрела сейчас огромное практическое значение в связи с появлением очень точных навигационных систем, работающих на сигналах со спутников. Если не принимать во внимание предсказаний общей теории относительности, то координаты будут рассчитаны с ошибкой в несколько километров!