Смекни!
smekni.com

Траектория экологической мысли. На пути к современному пониманию биосферы (стр. 2 из 4)

Теоретические исследования, которые выполнили Лотка и Вольтерра, привлекли внимание молодого советского биолога Георгия Францевича Гаузе (1910–1986). Он предложил свою, более понятную биологам модификацию уравнений, описывающих процессы межвидовой конкуренции. Экспериментальная проверка этих моделей на лабораторных культурах бактерий и простейших показала, что сосуществование видов возможно, если они занимают разные экологические ниши. В противном случае один из конкурирующих за ту же нишу видов неизбежно вытесняется другим (закон конкурентного исключения). Работы Гаузе вошли в опубликованную в 1934 году в США книгу «Борьба за существование» (в России она увидела свет лишь семь десятилетий спустя) и внесли весомый вклад в появление концепции экосистемы.

«Базовая единица» экологии

Честь введения понятия «экосистема», а произошло это в 1935 году, по праву принадлежит английскому ботанику Артуру Тэнсли (1871–1955). Конечно, у него были свои достаточно авторитетные предшественники — в частности, американский гидробиолог Эдвард Бёрдж (1851–1950), изучавший в начале ХХ века на материале озёрных сообществ роль организмов в круговороте вещества и трансформации энергии, или его немецкий коллега Август Тинеманн (1882–1960), сформулировавший в 1920-е годы такие важные для экологии понятия, как биомасса и биологическая продукция. Но всё же именно 1935 год принято считать годом рождения общей экологии как самостоятельной науки. Основное достижение Тэнсли заключалось в успешной попытке интегрировать биоценоз с биотопом на уровне новой функциональной единицы — экосистемы. И если в других, ранее сформировавшихся науках, таких как физика, химия или цитология, уже давно имелись свои базовые единицы — атом, молекула, клетка, то теперь для экологии ею стала экосистема — ограниченный во времени и в пространстве единый природный комплекс, образованный живыми организмами и средой их обитания, в котором живые и косные компоненты связаны между собой обменом веществ и распределением потока энергии.

А в 1942 году, независимо от Тэнсли, российский геоботаник В. Н. Сукачёв (1880–1967) на примере лесных сообществ разработал понятие о биогеоценозе. Будучи, в принципе, аналогом экосистемы, биогеоценоз характеризуется ограниченной протяжённостью и однородностью природно-климатических условий. На суше это может быть небольшой участок ландшафта — например, приречный луг или дерево и почва под ним, соответствующая проекции его кроны. И территориально и иерархически биогеоценозы могут рассматриваться как ячейки, или «клеточки», биосферы, которая, в свою очередь, является экосистемой наивысшего иерархического уровня.

Ведущую роль в экосистемных исследованиях по-прежнему играли гидробиологи. Объект их исследований — водные организмы, зачастую обитающие в замкнутых водоёмах (пруд, озеро), — отличался особенно зримым переплетением и взаимосвязью физико-химических и биологических процессов. Так, упоминавшийся уже лимнолог Эдвард Бёрдж, изучая «дыхание озёр», с помощью строгих количественных методов установил сезонную динамику содержания растворённого в воде кислорода, зависящую не только от перемешивания водной массы и диффузии кислорода из воздуха, но и от жизнедеятельности организмов — производителей кислорода (планктонных водорослей) и его потребителей (бактерий и животных). Впоследствии эти идеи были развиты в трудах российских лимнологов Л. Л. Россолимо (1894–1977), Г. Г. Винберга (1905–1987) и других. Винберг разработал так называемый балансовый энергетический подход. Суть его состояла в том, чтобы на базе единства биохимических процессов, протекающих в самых разных организмах, — например, фотосинтеза всех планктонных водорослей в пруду или всех растений в лесу — суммировать результаты их активности по количеству образующегося при этом органического вещества и выделяющегося кислорода. Появилась возможность не только количественно оценивать биологическую продукцию лесной или водной экосистем, но и разрабатывать их математические модели, основанные на энергетическом подходе.

Три года спустя аналогичные измерения были осуществлены и в США под руководством Джорджа Хатчинсона (1903–1991), знаменитого не только собственными исследованиями — его «Курс лимнологии» (1957) и сегодня представляет самую полную в мире сводку жизни озёр, — но и активной поддержкой талантливых молодых учёных. Среди его учеников следует в первую очередь назвать очень рано, к сожалению, умершего Раймонда Линдемана (1915–1942), чья небольшая по объёму работа «Трофическо-динамические аспекты экологии», опубликованная в 1942 году, без преувеличения, сделала эпоху в экологии. На неё и сегодня ссылаются экологи во всех уголках Земли. Линдеман разработал общую схему трансформации энергии в экосистеме и изложил основные методы расчёта её энергетического баланса. Он, в частности, теоретически показал, что при переходе с одного трофического уровня на другой количество энергии уменьшается так, что организмам каждого последующего уровня оказывается доступна только небольшая, не более 10%, часть от той энергии, что была в распоряжении организмов предыдущего уровня.

С этого момента экосистемные исследования становятся одним из магистральных направлений в экологии.

«Переоткрытие» биосферы и гипотеза «Гея»

Шаг за шагом, усилиями сотен учёных возводила экология недостающие конструкции и осваивала необжитое пространство того здания, своды и контуры которого очертил в своих трудах Вернадский. Однако до понимания биосферы как глобальной экосистемы пока ещё не поднималась и она. Идеи Вернадского, умершего в год окончания Второй мировой войны, остались во многом недооценены современниками, и даже его итоговый труд — своего рода научное завещание — «Химическое строение биосферы Земли и её окружения» был опубликован лишь 15 лет спустя после его смерти. Потребовалось ещё не одно десятилетие, прежде чем взгляд на биосферу как на единую, целостную систему стал утверждаться в представлениях и умах учёных.

К таковым в первую очередь надлежит отнести замечательного российского биолога Н. В. Тимофеева-Ресовского (1900–1981). В предвоенное десятилетие, в период жизни и работы в Германии, он прославился исследованиями в области радиационной генетики и выполненной совместно со своим аспирантом, будущим нобелевским лауреатом М. Дельбрюком работой по определению размеров гена. В последние свои годы Тимофеев-Ресовский сосредоточился на вопросах глобальной экологии и во многом предвосхитил понимание целого ряда только ещё вырисовывавшихся тогда проблем.

Так, выступая в 1968 году с докладом «Биосфера и человечество» на заседании отделения Географического общества г. Обнинска, где он поселился после освобождения из ГУЛАГа (в ту пору столичные и областные города были для него закрыты), он сравнил биосферу с гигантской живой фабрикой, преобразующей энергию и вещества на поверхности нашей планеты. Биосфера «формирует и равновесный состав атмосферы, и состав растворов в природных водах, а через атмосферу — энергетику нашей планеты. Она же влияет на климат»4.

Доклад этот в виде статьи напечатан в сборнике научных трудов Обнинского отделения Географического общества, но в силу специфики этого периферийного издания прочитан был лишь немногими, а по-настоящему оценить новаторские идеи учёного смогли, быть может, единицы. И, как это нередко бывало с российскими первопроходцами, доклад и статья прошли почти незамеченными. Как, впрочем, не хотела замечать в те годы опального учёного и Академия наук СССР. А ведь, по сути, Тимофеев-Ресовский, развивая идеи Вернадского, одним из первых высказал важную мысль о том, что управление биосферой осуществляется самой жизнью.

К сожалению, пребывание по ту сторону «железного занавеса» зачастую ставило российских учёных в весьма невыгодное положение, и высказанные Тимофеевым-Ресовским идеи фактически остались вне поля зрения мировой научной мысли. Зато необычайный интерес в широких научных кругах вызвала выдвинутая в 1970-х годах английским учёным Джеймсом Лавлоком (р. 1919) биосферная концепция Гея (по имени эллинской богини Земли).

Инженер по образованию, Лавлок работал в НАСА, где занимался разработкой приборов по обнаружению жизни на других планетах (в связи с предстоящими полётами автоматических станций к Марсу и Венере). А ещё раньше, в студенческие годы, он создал уникальный газовый спектрофотометр для измерения сверхмалых концентраций газов в атмосфере. Впоследствии именно с помощью этого прибора удалось обнаружить накопление хлорфторуглеродов, разрушающих озоновый слой Земли. Вот эта профессиональная деятельность и навела автора на мысль, что наличие жизни на планете можно в принципе обнаружить по составу её атмосферы, как наиболее чувствительной к любым биогеохимическим изменениям среды. Причём атмосфера «живых» планет, как предположил Лавлок, должна отличаться термодинамической неравновесностью, поддерживаемой благодаря активности жизни. В то время как у «неживых» планет состав атмосферы находится в равновесии с их средним химическим составом.

Образ Геи, по Лавлоку, возникает при мысленном взгляде на нашу планету из космоса, которая представляется как многоуровневая живая организация, как «суперорганизм», обладающий саморегуляторными «геофизиологическими» свойствами и поддерживающий параметры планетной среды на благоприятном для жизни уровне. При этом эволюция земной биоты настолько тесно связана с эволюцией её физического окружения, что вместе они образуют единую саморазвивающуюся систему, отчасти напоминающую по своим свойствам физиологию живого организма.

Особое внимание в своих построениях Лавлок уделяет бактериальному сообществу Земли. Бактерии на протяжении примерно двух миллиардов лет были единственной формой жизни на Земле и, как катализаторы биогеохимических циклов, сформировали биосферу. Они и сегодня остаются основой биогеохимической машины планеты. Но если царившее когда-то древнее бактериальное сообщество прокариот, покрывавших поверхность Земли в виде тонкой плёнки, было в некотором роде монопольной биогеосферной силой, то в дальнейшем, в ходе эволюции, его автокаталитические единицы «перекочевали» в состав более сложных организмов. Они образовали в ядерных клетках специализированные органеллы — митохондрии и хлоропласты. Управление «физиологическими» процессами Геи (процессами восстановления и окисления, соединения кислорода с углеродом и т. д.) осуществляется как прямыми наследниками безъядерных одноклеточных, например бактериями почвы, так и их потомками в ядерных клетках — митохондриями (окислители) и хлоропластами (восстановители). И этот каталитический гиперцикл, по терминологии нобелевского лауреата Манфреда Эйгена, как бы связывает мельчайшие живые организмы с планетарной макросистемой в плане поддержания климатических и биогеохимических параметров её среды.