Остановимся на гипотезе Джинса, получившей распространение в первой трети текущего столетия. Она полностью противоположна гипотезе Канта-Лапласа. Если последняя рисует образование планетарных систем как единственный закономерный процесс эволюции от простого к сложному, то в гипотезе Джинса образование таких систем есть дело случая. Исходная материя, из которой потом образовались планеты, была выброшена из Солнца при случайном прохождении вблизи него некоторой звезды. Это прохождение был настолько близким, что его можно рассматривать практически как столкновение. Благодаря приливным силам со стороны налетевшей на Солнце звезды, из поверхностных слоев Солнца выброшена струя газа. Эта струя останется в сфере притяжения Солнца и после того, как звезда уйдет от Солнца. Потом струя сконденсируется и даст начало планетам. Если бы гипотеза Джинса была правильной, число планетарных систем, образовавшихся за десять миллиардов лет ее эволюции, можно было пересчитать по пальцам. Но планетарных систем фактически много, следовательно, эта гипотеза несостоятельна. И ниоткуда не следует, что выброшенная из Солнца струя горячего газа может сконденсироваться в планеты. Таким образом, космологическая гипотеза Джинса оказалась несостоятельной.
Выдающийся советский ученый О.Ю.Шмидт в 1944 году предложил свою теорию происхождения Солнечной системы: наша планета образовалась из вещества, захваченного из газово-пылевой туманности, через которую некогда проходило Солнце, уже тогда имевшее почти “современный” вид. При этом никаких трудностей с вращением момента планет не возникало, так как первоначально момент вещества облака может быть сколь угодно большим. Начиная с 1961 года эту гипотезу развивал английский космогонист Литтлтон, который внес в нее существенные улучшения. По обеим гипотезам “почти современное” Солнце сталкивается с более или менее “рыхлым” космическим объектом, захватывая части его вещества. Тем самым образование планет связывается с процессом звездообразования.
Генетика и механизм воспроизводства живого.
Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячелетий человек пользовался генетическими методами для улучшения полезных свойств возделываемых растений и выведения высокопродуктивных пород домашних животных, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения к другому. Отбирая определенные организмы из природных популяций, и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами. Однако лишь в начале CC века ученые стали осознавать в полной мере важность законов наследственности и ее механизмов. Хотя успехи микроскопии позволили установить, что наследственные признаки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе “задатки” того огромного множества признаков, из которых слагается каждый отдельный организм. Памятной датой в биологии стала весна 1953 года. Исследователи американец Д. Уотсон и англичанин Ф. Крик расшифровали «святая святых» наследственности - ее генетической код. Именно с той поры слово «ДНК» - дезоксирибонуклеиновая кислота стало известно не только узкому кругу ученых, но и каждому образованному человеку во всем мире. Бурный вековой период ее развития ознаменован в последние годы расшифровкой нуклеотидного состава «молекулы жизни» ДНК у десятков видов вирусов, бактерий, грибов и многоклеточных организмов. В последние десятилетия человечество наблюдает за стремительным прогрессом генетики. Эта наука давно стала важнейшим достоянием человечества, к которому обращены надежды миллионов людей. Теперь можно дать определение генетике. Генетика – это наука о наследственности и изменчивости организмов, она раскрывает сущность того, каким образом каждая живая форма воспроизводит себя в следующем поколении, и как в этих условиях возникают наследственные изменения, которые передаются потомкам, участвуя в процессах эволюции и селекции. Наследственность и изменчивость – это две стороны одних и тех же жизненных основных процессов. В противоположности наследственности и изменчивости заключена диалектика живого. Представители любого биологического вида воспроизводят подобные себе существа. Это свойство потомков быть похожими на своих предков называется наследственностью. Несмотря на огромное влияние наследственности в формировании фенотипа живого организма, родственные особи в большей или меньшей степени отличаются от своих родителей. Это свойство потомков называется изменчивостью. Изучением явлений наследственности и изменчивости и занимается наука генетика. Таким образом, генетика это еще и наука о закономерностях наследственности и изменчивости. По современным представлениям, наследственность - это свойство живых организмов передавать из поколения в поколение особенности морфологии, физиологии, биохимии и индивидуального развития в определенных условиях среды. Изменчивость - свойство, противоположное наследственности, - это способность дочерних организмов отличаться от родителей морфологическими, физиологическими, биологическими особенностями и отклонениями в индивидуальном развитии. Наследственность и изменчивость реализуются в процессе наследования, т.е. при передаче генетической информации от родителей к потомкам через половые клетки (при половом размножении) либо через соматические клетки (при бесполом размножении). Генетика как наука решает следующие основные задачи: во-первых, она изучает способы хранения генетической информации у разных организмов (вирусов, бактерий, растений, животных и человека) и ее материальные носители; во-вторых, анализирует способы передачи наследственной информации от одного поколения организмов к другому; в третьих, выявляет механизмы и закономерности реализации генетической информации в процессе индивидуального развития и влияние на их условий среды обитания; в четвёртых, изучает закономерности и механизмы изменчивости и ее роль в приспособительных реакциях и в эволюционном процессе; и последнее, она изыскивает способы исправления поврежденной генетической информации. Для решения этих задач используются разные методы исследования.