или
Заметим, что при a =b и
Окончательно получим
При a = b получаем
При a = b и a = 1 получается длина дуги в классической задаче [12] Дидоны
Или
3. Вариационная задача поиска оптимального оператора
Кроме приведенной в разделе 2 постановки вариационной задачи, сформулируем задачу поиска ядра оптимального оператора F i , действующего на заданные функции Si, и доставляющего экстремум функционалу с разрывным интегрантом F. Такие задачи могут, например встречаться при нахождении распределения плотности заряда в частице.
Пусть существует функционал I с разрывным интегрантом F
В случае конечных пределов интегрирования в (3.1) функционал I всегда можно выразить через интеграл с бесконечными пределами с помощью функции (1.2) включения H(x). В формуле (3.1) символами F i(x) обозначены линейные интегральные операторы
с искомым ядром K(x,t), действующим на заданные функции
Частные решение
Установим интересное свойство множества экстремалей. Для этого представим ядро в виде произведения
где
Используем свойство свертки и приведем оператор (3.4) к виду
Частная оптимизационная задача для функционала (3.1), зависящего от линейного интегрального оператора с ядром (3.3), свелась к задаче для функционала (3.1), зависящего от интегральных операторов (3.5) с разностными ядрами Ki (x,t)=Si (x-t)r (x-t). Решение этой задачи получено в разделе 2. Частным необходимым условием экстремума функционала I на основе раздела 2 является уравнение
Поскольку функции Si (x-t) заданы из условий задачи, а функция r (x-t) выбирается произвольно, то каждой из выбранных r (x-t) соответствует оптимальная h(t), т.е. даже при представлении ядра K(x,t) в виде произведения (3.3) единственного решения сформулированной задачи не существует.
Никаких ограничений на непрерывность ядер K(x,t) при выводе частных необходимых условий экстремума не накладывалось, поэтому и функции r (x-t), и функции h(t) могут быть разрывными или d -функцией и ее производными. Следовательно, на основании теоремы [13] о мощности множества функций действительного переменного можно сделать вывод о том, что множества частных и, тем более, общих необходимых условий экстремума имеют мощность больше мощности континуума.
В связи с тем, что задача (3.1), (3.2) счетного множества решений не имеет, решением в данном случае можно назвать конструктивное описание подмножества
Общая задача
Рассмотрим общую задачу (3.1), (3.2). Будем ее решать как вариационную. Для этого введем однопараметрическое семейство кривых - функций двух переменных K(x,t)=K(x,t) + a d K(x,t), где d K(x,t) - произвольная функция двух переменных, a - малый параметр K(x,t) вместо K(x,t) в операторы (3.2), операторы (3.2) в функционал (3.1), дифференцируя (3.1) по параметру a , получим вариацию d I
Полагая, что к вариации (3.7) применима теорема Фубини, изменим порядок интегрирования и суммирования и положим вариацию dI равной нулю
Применяя к вариации (3.8) основную лемму вариационного исчисления в формулировке Л.Янга [7], получим необходимое условие экстремума функционала (3.1), зависящего от оператора (3.2),
Если интегрант функционала (3.1) не является линейным, частные производные интегранта
Список литературы
[1] Фейнмановские лекции по физике, Том 6, М.: Мир, 1977.
[2] КашиновВ.В. Физическая мысль России, N 1/2, (1999), с.127.
[3] КларкФ. Оптимизация и негладкий анализ: Пер. с англ. / Под ред. В.И.Благодатских, М.: Наука, 1988.
[4] СмоляноваМ.О. Непрерывно дифференцируемая разрывная функция на пространстве D // Известия РАН. Серия математическая. Том 59.5, (1995), с.197-202.
[5] БатухтинВ.Д., МайбородаЛ.А. Разрывные экстремальные задачи, СПб.: Гиппократ, 1995.
[6] АнтосикП., МикусинскийЯ., СикорскийР. Теория обобщенных функций (Секвенциальный подход). - М.: Мир, 1976.
[7] ЯнгЛ. Лекции по вариационному исчислению и оптимальному управлению. - М.: Мир, 1974.
[8] КолмогоровА.Н., ФоминС.В. Элементы теории функций и функционального анализа. - М.: Наука, 1981.
[9] МышкисА.Д. Лекции по высшей математике. - М.: Наука, 1973. с.186-188.
[10] КашиновВ.В. Необходимые условия оптимальности в некоторых задачах управления и фильтрации // Кибернетика. 6, 1972, с.148-149.
[11] ПахолковГ.А., КашиновВ.В., ПономаренкоБ.В. Вариационный метод синтеза сигналов и фильтров. - М.: Радио и связь, 1981.
[12] КрасновМ.Л., МакаренкоГ.И., КиселевА.И. Вариационное исчисление. - М.: Наука, 1973.
[13] МакаровИ.П. Дополнительные главы математического анализа. - М.: Просвещение, 1968.