Будем решать вариационную задачу для функционалов с разрывным интегрантом, зависящих от линейных интегральных операторов
(2.1)где h(t) - экстремаль, относительно которой предполагаем, что
.Функционал качества I может зависеть от нескольких операторов
(2.2)где F[T ]- интегрант, определяющий связь (композицию) операторов F i в функционале I. Интегрант F[T ] может быть непрерывным, гладким, негладким и даже континуально многозначным или разрывным.
Оптимизации методами негладкого анализа посвящена монография Френка Кларка [3], но методику Кларка применить к функционалам, зависящим от интегральных операторов, нельзя, как нельзя ее применять и для функционалов с континуально многозначным или разрывным интегрантом. Кроме того, экстремали у Кларка предполагаются абсолютно непрерывными. Все это несколько сужает область применения негладкой оптимизации Кларка - теории, впитавшей в себя достижения его предшественников, на кoторых он ссылается в своей монографии. Поскольку оптимизируемый функционал зависит от интегральных операторов, метод, использованный в монографии [5], неприменим тоже. В то же время для решения сформулированной задачи достаточно методов вариационного исчисления, теории обобщенных функций и теоремы Фубини [8], поэтому будем поступать так.
Негладкий, континуально многозначный или разрывной интегрант можно представить с помощью функции включения H(x) (1.2) или ее производных, т.е. d -функции (1.5) и ее производных, используя их фильтрующие свойства. При варьировании функционала I все производные будем понимать в обобщенном смысле
.
Заметим, что этот интеграл теперь имеет математический и физический смыл, а не является "просто символом", как при классическом определении d -функции.
По общему правилу [9-12] введем однопараметрическое семейство кривых
, где d h(t)-произвольная функция из Lp[a,b], a - малый параметр. Подставляя в операторы (2.1), а операторы (2.1) в функционал (2.2) и дифференцируя I по a , получим вариацию функционала d I и приравняем ее нулю: (2.3)Теперь, чтобы получить необходимое условие экстремума, надо исключить произвольную функцию из вариации функционала d I. В классическом вариационном исчислении это делается с помощью интегрирования по частям, которое в данном случае неприменимо. Полагая, что к вариации d I применима теорема Фубини [8], одним из условий применимости которой может быть суммируемость произведений
изменим в формуле (2.3) порядок интегрирования [10, 11]
(2.4)Используя основную лемму вариационного исчисления в формулировке Л.Янга [7], получим аналог уравнения Эйлера для функционалов с континуально многозначным или разрывным интегрантом, зависящих от линейных интегральных операторов, действующих на экстремаль,
(2.5)Следствие. Если воспользоваться фильтрующим свойством d -функции и ее производных, и обозначить ядра операторов (2.1) через Ki(x,t)=d (i)(x-t), то уравнение (2.5) примет вид уравнения Эйлера
(2.6)простейшей вариационной задачи [12], но для функционалов с континуально многозначным или разрывным интегрантом
(2.7)зависящих от искомой функции h(t) и ее производных h(i)(t).
Пример. Задача Дидоны с канавой. В распоряжении царевны имеется веревка заданной длины L, которой следует ограничить участок побережья, причем береговая черта представляется линией x=0 на плоскости Оtx (Рис.2). При этом надо найти кривую длины L, лежащую в полуплоскости
, соединяющую точки (-1,0) и (1,0), такую что площадь между кривой и осью t максимальна.Стремясь иметь для примера негладкий интегрант, Кларк модифицировал [3, с.178] задачу Дидоны следующим образом. Он полагает, что для некоторого a >0 земля в области x>a худшего качества и доход с нее составляет только половину дохода с земли в области x<a .
Рис.2. Участок Дидоны с канавой
Доход Д с огороженного участка, ограниченного кривой x(t), равен
(П.1)где gn[x(t)] = {x(t), если
; (x+a )/2, если } .Следует максимизировать значение дохода Д (интеграла (П.1)) при наличии ограничений (П.2) . (П.3)Далее Кларк использует методы негладкого анализа для решения модифицированной задачи Дидоны. Применение этих методов ограничивается негладкими интегрантами и абсолютно непрерывными экстремалями.
Для частичной иллюстрации возможностей предложенного нами метода решения задач с разрывным интегрантом будем полагать, что участок Дидоны параллельно береговой линии пересекает канава шириной b -a . Один берег канавы проходит по линии x(t)=a ., а другой - по линии x(t)=b . Участок канавы, ограниченный берегами и веревкой (рис.2), никакого дохода не приносит, и интегрант выглядит так:
(П.4)Веревка ограничивает канаву, пересекая ее, но разорвать веревку Дидона не может, поэтому изопериметрическое условие (П.3) остается в силе. Требуется максимизировать доход с участка, расположенного по берегам канавы, ограниченного береговой линией и веревкой.
Представим g[x(t)] с помощью единичной функции включения (1.2) в виде
В уравнение Эйлера простейшей вариационной задачи (2.6) входят производные интегранта по x и по
. Вычислим эту производнуюПроизводя сокращения и учитывая свойства d -функции [7], находим
или
(П.5)С учетом изопериметрического условия (П.3), получим дифференциальное уравнение для экстремали
(П.6)где l - неопределенный пока множитель Лагранжа [7].
Уравнение (П.6) при
и ограничениях (П.2) имеет интегралом окружность (П.7)где C = ¦ (l 2 /a2-1)1/2, симметрично расположенную относительно оси Оx (рис.2). Выразим длину веревки Дидоны через параметры задачи a , b , g и неизвестный коэффициент l .
В горизонтальной полосе 0<x<a
и центр соответствующей окружности располагается ниже оси Оt (иначе интегральные дуги окажутся вне вертикальной полосы -1<t<1), откуда для длины дуги получим (П.8)При x>b и
при отыскании максимума функционала (П.1) в случае g >1 (или g <1) центр окружности, содержащей интегральную дугу , будет расположен выше (или ниже) оси Оt. Для длины дуги получим (П.9)В полосе a <x<b
и интегральная линия имеет вид отрезков прямой , соединяющей концы дуг и с концами дуги . При разных значениях параметра g может быть разная ориентировка этих отрезков. В частности, они могут быть параллельны оси Оy ( )или наклонены. Длина отрезка определяется выражением