определяющее количество элементов в бесконечном множестве. А такое доказанное Кантором положение, как "число точек отрезка равно числу точек квадрата", настолько сильно повлияло на математику, что заставило в топологии отказаться от общепринятого во всем естествознании параметрического определения размерности пространств и принять на вооружение индуктивное определение размерности, которое определяет континуумы любых размерностей как множества. Все эти парадоксы никак не согласуются с классической логикой. в теории множеств с классической логикой согласуется как раз только одно – диагональный метод Кантора, поскольку в нем не задействовано противоречивое определение бесконечного множества на основе принципа "часть может быть равна целому". Поэтому если и есть основания говорить об ошибке Георга Кантора, то не относительно диагонального метода [7], а относительно введенного им в теорию множеств принципа "часть может быть равна целому", который находится в вопиющем противоречии с классической логикой. В [11] предложено отказаться в теории бесконечных множеств от принципа "часть может быть равна целому" и соответственно от определения бесконечного множества по Дедекинду. В результате в диагональном методе доказательства отношения 2ω>ω уже нельзя будет добавить в предполагаемый пересчет множества 2ω новый, "диагональный", элемент, так как это добавление согласно принципу классической логики "часть не может быть равна целому" изменит предполагаемый пересчет и превратит его в новое множество, неэквивалентное предполагаемому пересчету. Диагональный метод Кантора, таким образом, останется непоколебимым. Уйдут также из теории множеств и выше перечисленные противоречия, а в бесконечном будут действовать те же законы классической логики, что и в конечной области.
Интересно, конечно, задаться вопросом: как и почему крупные математики доказывали и передоказывали теорему Кантора и не замечали противоречия между определением бесконечного множества и диагональным методом? Нам кажется, чтопри ее доказательстве, в силу грандиозности последствий теоремы "2M>M", на время или "забывали" о принципе "часть может быть равна целому", или подсознательно подчинялись принципу "часть не может быть равна целому" и потому останавливались на том самом месте диагонального метода, где надо было проверить возможность добавления нового элемента к проверяемому множеству и повторного построения другого нового элемента и т.д. скорее всего, этим и можно объяснить ситуацию с диагональным методом. Здесь уместно вспомнить Б. Рассела и спросить: почему Рассел вместо того, чтобы разобраться в сущности оснований теории множеств и их противоречий, выставлял на передний план следствия из обнаруженных им парадоксов? Почему? Нам кажется потому, что критиковать и разрушать всегда легче, чем созидать, что деконструировать, ломать легче, чем конструировать. Аналогичным образом обстоят дела и в случае последних антиканторовских выступлений А.А. Зенкина.
В его статье [9] на основе ошибочных умозаключений также дискредитируется канторовская теория множеств. На наш взгляд, в ней имеет место самое простое смешение конечного с бесконечным [9 с.80-81]. Действительно, там рассматриваются две знаковые конструкции (5) и (6). Знаковая конструкция (5) – это соответствующая запись натурального ряда:
1, 2, 3, ..., w, w+1, w+2, w+3, ...,
где символ w есть произвольное конечное натуральное число. Соответственно многоточие между натуральным числом 3 и натуральным числом w означает, что на его месте находится w-4 натуральных чисел, то есть вполне определенное конечное количество w-4 натуральных чисел. Знаковая конструкция (6) – это, как говорит автор, "знаменитый канторовский ряд трансфинитных чисел":
1, 2, 3, ..., ω, ω+1, ω+2, ω+3, ..., ω×2, ω×2+1, ω×2+2, ω×2+3, ...
(На самом деле это не ряд трансфинитных чисел, а бесконечный ряд порядковых чисел. порядковые же числа включают в себя и конечные порядковые числа, и бесконечные, то есть трансфинитные, числа.) Здесь символ ω означает наименьшее трансфинитное число. Соответственно многоточия между числами 3 и ω, с одной стороны, и между числами ω+3 и ω×2, с другой стороны, говорят о том, что на месте первого многоточия находится бесконечное количество конечных натуральных чисел 4, 5, ..., а на месте второго многоточия находится такое же бесконечное количество трансфинитных чисел ω+4,ω+5,ω+6, ... сравнивая чисто визуально конструкции (5) и (6), автор делает следующий вывод (там же с.81): "таким образом мы фактически построили (доказали построением) 1–1-соответствие между множеством трансфинитных целых (порядковых) чисел Кантора (6) и множеством всех конечных натуральных чисел с сохранением порядка". Как можно установить (1–1)-соответствие, то есть взаимно однозначное соответствие, между множеством конечных чисел (конструкция (5)) и множеством порядковых чисел, включающих в себя конечные порядковые числа и трансфинитные числа (конструкция (6)), неизвестно никому. Поэтому правильно об этом сказано в комментарии к данной статье. А установить это соответствие невозможно потому, что трансфинитные числа конструкции (6) – это порядковые типы счетных вполне упорядоченных множеств, которые составляют несчетное множество [12, с. 69-70]. Автор же вопреки этому утверждает на с.81, что "Хорошо известно, что канторовский ряд (6) ... является счетным множеством", чего на самом деле нет [12, с. 69-70]. А все дело в том, что автор всеми силами пытается ниспровергнуть бесконечность и потому отождествляет конечное с бесконечным посредством надуманного им (1–1)-соответствия между конструкциями (5) и (6). Причем, автор неточен и в том, что конструкцию (6) называет "множеством трансфинитных чисел", хотя в нее входят и конечные числа (они что – тоже трансфинитные числа?!). Надо сказать больше. На с.93 в ответе автора на упомянутый комментарий снова утверждается, что конструкция (6) является счетной. Но это неверно! Конструкция (6), как минимум, имеет мощность стандартного континуума ω1=2ω, о чем говорят и П.С. Александров [12, с. 69 и теорема 18 на с. 70], и Ю.И. Манин [13, с. 105]. Это – первое. Во-вторых, автор настойчиво утверждает [9, с. 81, 93] об изоморфизме конструкций (5) и (6) с сохранением естественного порядка натурального ряда. Но этого тоже не может быть, поскольку в конструкции (5) любое натуральное число n (кроме первого) имеет предшественника n-1, а в конструкции (6) имеется бесконечно много порядковых чисел (так называемых предельных) ω,ω×2,ω×3,..., которые не имеют предшественников (см., например, у Ю.И. Манина [13, с. 104] или в математической энциклопедии [10, Т.4, статья "Порядковое число"]), вследствие чего в конструкции (6) перед предельными трансфинитами ω, ω×2, ω×3, ... есть как бы "дырки", или "черные дыры", в которых содержатся мириады счетно бесконечных множеств, а в конструкции (5) таковых нет и поэтому между конструкциями (5) и (6) никак не может быть изоморфизма, тем более, с сохранением естественного порядка натурального ряда.
таким образом, никакого (1–1)-соответствия между счетной конструкцией (5) и несчетной конструкцией (6) нет и быть не может. Соответственно нет и быть не может никакой речи о сведении бесконечного к конечному, что пытался сделать Зенкин.
Из всего вышесказанного следует только одно: ниспровержение канторовской теории множеств не имеет под собой никаких оснований. Противоречия? Да – в ней имеются противоречия, но их преодоление и устранение являются вполне посильными и реальными [11].
Перейдем ко второму названному нами концептуальному противоречию – фактическому отсутствию определения начальной актуальной бесконечности. Уязвимым в теории множеств является начальное бесконечное множество, в качестве которого выступает множество натуральных чисел N=0,1,2,3,...,n,... Оно называется также счетным множеством. Изучается оно как актуальное множество, имеющее мощность ω. Бесконечность ω есть наименьшая бесконечность, поскольку все числа, меньшие этой бесконечности, входят в множество N, которое включает в себя только конечные числа. Известным противоречием является тот факт, что множество N содержит только конечные числа – оно еще называется множеством всех конечных чисел – и, несмотря на это, постулируется, что оно содержит бесконечное количество ω конечных чисел. С точки зрения классической логики этого не может быть, поскольку количество чисел в множестве N должно совпадать с максимальным числом этого множества, то есть число ω, или по крайней мере число ω-1, должно входить в множество N. Но это не так – число ω не входит в ряд N, оно называется предельным, к которому стремятся числа натурального ряда, что записывают как: