Содержание | 2 | |
Введение | 3 | |
1. | Общая часть | |
1.1. | Основные понятия | 6 |
1.2. | Описание исходной схемы автоматического регулирования | 9 |
1.3. | Разработка функциональной схемы САР | 13 |
2. | Расчетная часть | |
2.1. | Параметрический синтез и анализ одноконтурной САР | 14 |
2.1.1. | Оценка возможности статического регулирования | 15 |
2.1.2. | Оценка возможности астатического регулирования | 20 |
2.1.3. | Исследование качества одноконтурной САР | 22 |
3. | Разработка контура регулирования заданным параметром | 25 |
Заключение | 27 | |
Список используемой литературы | 28 |
Введение
Современная теория автоматического регулирования является основной частью теории управления. Система автоматического регулирования состоит из регулируемого объекта и элементов управления, которые воздействуют на объект при изменении одной или нескольких регулируемых переменных. Под влиянием входных сигналов (управления или возмущения), изменяются регулируемые переменные. Цель же регулирования заключается в формировании таких законов, при которых выходные регулируемые переменные мало отличались бы от требуемых значений. Решение данной задачи во многих случаях осложняется наличием случайных возмущений (помех). При этом необходимо выбирать такой закон регулирования, при котором сигналы управления проходили бы через систему с малыми искажениями, а сигналы шума практически не пропускались.
Теория автоматического регулирования прошла значительный путь своего развития. На начальном этапе были созданы методы анализа устойчивости, качества и точности регулирования непрерывных линейных систем. Затем получили развитие методы анализа дискретных и дискретно-непрерывных систем. Можно отметить, что способы расчета непрерывных систем базируются на частотных методах, а расчета дискретных и дискретно-непрерывных — на методах z-преобразования.
В настоящее время развиваются методы анализа нелинейных систем автоматического регулирования. Нарушение принципа суперпозиции в нелинейных системах, наличие целого ряда чередующихся (в зависимости от воздействия) режимов устойчивого, неустойчивого движений и автоколебаний затрудняют их анализ. Еще с большими трудностями встречается проектировщик при расчете экстремальных и самонастраивающихся систем регулирования.
Как теория автоматического регулирования, так и теория управления входят в науку под общим названием «техническая кибернетика», которая в настоящее время получила значительное развитие. Техническая кибернетика изучает общие закономерности сложных динамических систем управления технологическими и производственными процессами. Техническая кибернетика, автоматическое управление и автоматическое регулирование развиваются по двум основным направлениям: первое связано с постоянным прогрессом и совершенствованием конструкции элементов и технологии их изготовления; второе — с наиболее рациональным использованием этих элементов или их групп, что составляет задачу проектирования систем.
Проектирование систем автоматического регулирования можно вести двумя путями: методом анализа, когда при заранее выбранной структуре системы (расчетным путем или моделированием) определяют ее параметры;
методом синтеза, когда по требованиям, к системе сразу же выбирают
наилучшую ее структуру и параметры. Оба эти способа получили широкое практическое применение и поэтому достаточно полно освещены в настоящей книге.
Определение параметров системы, когда известна ее структура и требования на всю систему в целом, относится к задаче синтеза. Решение этой задачи при линейном объекте регулирования можно найти, используя, например, частотные методы, способ корневого годографа или изучая траектории корней характеристического уравнения замкнутой системы. Выбор корректирующего устройства методом синтеза в классе дробно-рациональных функций комплексного переменного можно выполнить с помощью графоаналитических методов. Эти же методы позволяют синтезировать корректирующие устройства, подавляющие автоколебательные и неустойчивые периодические режимы в нелинейных системах.
Дальнейшее развитие методы синтеза получили на основе принципов максимума и динамического программирования, когда определяется оптимальный с точки зрения заданного критерия качества закон регулирования, обеспечивающий верхний предел качества системы, к которому необходимо стремиться при ее проектировании. Однако решение этой задачи практически не всегда возможно из-за сложности математического описания физических процессов в системе, невозможности решения самой задачи оптимизации и трудностей технической реализации найденного нелинейного закона регулирования. Необходимо отметить, что реализация сложных законов регулирования возможна лишь при включении цифровой вычислительной машины в контур системы. Создание экстремальных и самонастраивающихся систем также связано с применением аналоговых или цифровых вычислительных машин.
Формирование систем автоматического регулирования, как правило, выполняют на основе аналитических методов анализа или синтеза. На этом этапе проектирования систем регулирования на основе принятые допущений составляют математическую модель системы и выбирают предварительную ее структуру. В зависимости от типа модели (линейная или нелинейная) выбирают метод расчета для определения параметров, обеспечивающих заданные показатели устойчивости, точности и качества. После этого уточняют математическую модель и с использованием средств математического моделирования определяют динамические процессы в системе. При действии различных входных сигналов снимают частотные характеристики и сравнивают с расчетными. Затем окончательно устанавливают запасы устойчивости системы по фазе и модулю и находят основные показатели качества.
Далее, задавая на модель типовые управляющие воздействия; снимают характеристики точности. На основании математического моделирования составляют технические требования на аппаратуру системы. Из изготовленной аппаратуры собирают регулятор и передают его на полунатурное моделирование, при котором объект регулирования набирают в виде математической модели.
По полученным в результате полунатурного моделирования характеристикам принимают решение о пригодности работы регулятора с реальным объектом регулирования. Окончательный выбор параметров регулятора и его настройка выполняют в натурных условиях при опытной отработке системы регулирования.
Развитие теории автоматического регулирования на основе уравнений состояния и z-преобразований, принципа максимума и метода динамического программирования совершенствует методику проектирования систем регулирования и позволяет создавать высокоэффективные автоматические системы для самых различных отраслей народного хозяйства. Полученные таким образом системы автоматического регулирования обеспечивают высокое качество выпускаемой продукции, снижают ее себестоимость и увеличивают производительность труда.
1. Общая часть.
1.1. Основные понятия
Преобразование входного сигнала системы (управляющего воздействия) в выходной сигнал (регулируемую величину) определяет закон изменения регулируемой величины. Реализация желаемого закона осуществляется в результате формирования управляющих переменных, которые воздействуют на регулируемую систему. Законы изменения регулируемой величины во времени могут быть различными; математически они описываются оператором системы. Этот оператор может реализовать пропорциональную зависимость выходного сигнала от входного, связь в виде производной или интеграла и т. д. В более общем случае, этот оператор может быть и нелинейным.
Необходимо отметить, что законы изменения регулируемых величин в машинах и агрегатах нарушаются под влиянием внешних, а иногда ивнутренних воздействий, называемых возмущениями (или возмущающими воздействиями).Из определения этих воздействий видно, что система автоматического регулирования должна как можно точнее воспроизводить управляющее воздействие и возможно меньше реагировать на возмущающее воздействие.
Существует три различных принципа построения систем регулирования, обеспечивающих реализацию требуемого закона изменения регулируемой величины: по разомкнутому циклу, по замкнутому циклу, по комбинированному циклу регулирования (замкнуто-разомкнутый). Принцип разомкнутого цикла заключается в обеспечении требуемого закона изменения регулируемой величины непосредственно путем преобразования управляющего воздействия. Принцип замкнутого цикла характеризуется сравнением управляющего воздействия с действительным изменением регулируемой величины за счет применения обратной связи и элемента сравнения. Образующийся в результате сравнения сигнал ошибки не должен превышать некоторой заданно величины. За счет этого и обеспечивается в замкнутых системах требуемый закон изменения регулируемой величины. Комбинированный принцип заключается в сочетании замкнутого и разомкнутого циклов в одной системе.
Автоматическим управлением называется процесс, при котором
операции выполняются посредством системы, функционирующей без вмешательства человека в соответствии с заранее заданным алгоритмом.
Автоматическая система с замкнутой цепью воздействия, в которой управляющее (регулирующее) воздействие вырабатывается в результате сравнения истинного значения управляемой (регулируемой) величины с заданным (предписанным) ее значением, называется АСР.