3. Система управления интеллектуальным зданием на примере трех типов зданий: многоквартирное, офисное здание и музей-усадьба Н.Е. Жуковского
Основываясь на предоставляемых сервисах, все аспекты управления инфраструктурой здания сводятся в единую систему, выполняющую многообразные целевые функции, в число которых входят:
пожарная сигнализация;
управление параметрами среды;
контроль доступа в здание;
сигнализация взлома;
управление лифтами;
телевизионное слежение;
регистрация времени пребывания;
управление освещением;
контроль использования электрической энергии;
отопление, вентиляция, поддержание микроклимата.
Кроме выполнения вышеперечисленных целевых функций на нее могут быть возложены и функции управления информационной инфрастуктурой:
контроль доступа к информации и управление безопасностью;
управление событиями;
отображение и поддержка бизнес-процессов;
автоматизированное управление хранением данных;
управление транспортом данных;
управление рассылкой отчетов;
управление проблемами;
управление сетью.
3.1. Система управления многоквартирным зданием
Такая система разделяется на автономные квартирные системы, которые обеспечивают минимальный набор возможностей ( контроль протечки воды, возгорания и проникновения). Описанная система представляет собой упрощенный вариант автономной внутриквартирной системы управления. Такой вариант предусматривает наличие человеческого фактора, то есть присутствие диспетчера, у которого имеется электронное табло, выдающее полную информацию о техническом состоянии каждой из квартир такого здания. Благодаря этому табло диспетчер всегда знает, дома ли хозяин квартиры, нет ли протечки воды, утечки газа, возгорания и пр. При возникновении внештатной ситуации внутриквартирная система управления:
1. Оповещает диспетчера.
2. Осуществляет дозвон по телефонным номерам, определенным хозяином для каждого случая.
3. Она может самостоятельно принять меры: при проникновении в квартиру включить сигнал тревоги, при протечке перекрыть подачу воды электромагнитными клапанами, при утечке газа – перекрыть его, включить вентиляцию и выключить электроэнергию.
Функции системы управления не ограничиваются контролем состояния квартир. В ее ведении находятся также общие помещения здания – холлы, лестницы, гараж и т.д. Она следит, чтобы в технологических помещениях не было протечек воды, контролирует загазованность в помещениях.
3.2. Система управления офисным зданием
Рассматривая систему управления для офиса, необходимо обеспечить в каждом из помещений (входная зона, переговорная комната, кабинет руководителя, зал секретарей, менеджеров и помещения бытового назначения) выполнение соответствующих функций системы управления.
Приведем пример конфигурации системы управления для офисного помещения на примере 2-х этажного торгового центра. Система управления в данной конфигурации обеспечивает выполнение следующих функций:
1. Контроль протечки воды.
2. Управление вентиляцией.
3. Управление освещением.
4. Управление с персонального компьютера.
Интересным образом решен вопрос освещения. Для всего пространства торгового зала достаточен один вид освещения, но при приближении покупателя к витрине включается дополнительная подсветка.
По желанию руководства торгового зала по датчикам движения будут включаться различные группы освещения. Управлять ими можно также с дистанционного пульта.
3.3. Система управления музеем-усадьбой Н.Е Жуковского
Рассмотрим минимальную конфигурацию системы, состоящую из датчиков движения, выключателей и диммеров, подключенных посредством стандартной электропроводки или радиоканала к контроллеру (блоку управления).
Данная система может функционировать как минимум в двух режимах:
1) Система безопасности (охранная система) в ночное время или в выходные дни.
2) Система контроля освещением в рабочее время
Рис.5. Радиус охвата датчика движения
Рис. 6.
Рис. 7.
Для корректного функционирования этой системы нам необходимо в каждом помещении разместить по датчику движения MS-13, имеющий следующую диаграмму направленности (рис. 5), так как этот датчик передает информацию по радиоканалу и имеет автономное питание, которого хватает на один год (используются стандартные алкалиновые батарейки). Он может быть установлен в любом месте помещения, в соответствии с требованиями охвата пространства.
Эти места показаны на схеме (рис. 6). При нарушении охраняемого контура датчик подает сигнал в систему. Может быть создано несколько сценариев дальнейших действий: от включения света в соседней комнате, что может отпугнуть потенциальных нарушителей, до включения тревоги (звуковая сирена PH7208 просто подключается к розетке).
В режиме же контроля освещения, тот же датчик движения может автоматически включать свет в этом помещении и после программируемого промежутка времени отключить его при отсутствии движения в заданном пространстве. Установленные выключатели AW-10 могут управляться не только автоматическими датчиками движения, но и переносными радиопультами, что повышает функциональность всей системы.
В дальнейшем данная конструкция системы может быть дополнена системой контроля отопления и влажности, которая, получив информацию с датчиков температуры, расположенных в разных частях дома, сможет оптимальным образом поддерживать нужный температурный режим. А это очень важно при работе с экспонатами.
Схема размещения датчиков температуры приведена на рис. 7. Как мы видим по схеме, нет необходимости установки датчиков в каждом отдельном помещении, так как комнаты сообщаются друг с другом, и, следовательно, температура в соседних помещениях будет приблизительно одинакова. Использование всего четырех датчиков ADI-000159 позволит контролировать температурный режим во всем доме.
В музее для отопления используется электрический котел, который может автоматически управляться выключателем HD245.
3.4. Экономические аспекты проекта.
Расчет экономии электричества в системе освещения и отопления
Для освещения первого и второго этажа усадьбы требуется 4.8 КВт/ч (сеть 220В). Допустим, что среднее потребление электроэнергии на одну комнату составляет 0,343 КВт/ч (всего 14 комнат). При проведении экскурсии люди, как правило, находятся в одной или двух комнатах, следовательно, освещение в других помещениях не требуется.
Если среднее время экскурсии занимает около двух часов, то экономия электроэнергии за период эксплуатации составит 8,23 КВт/ч или приблизительно 85%.
4,8КВт/ч *2ч – 0,343КВт/ч * 2комнаты * 2ч = 8,23КВт/ч
Использование дневной и ночной схемы отопления с разницей температур в 5 градусов дает возможность экономии до 30% в зависимости от установленного отопительного оборудования.
Заключение
Исходя из приведенного анализа различных интеллектуальных систем управления зданиями и учитывая ограничения при инсталляции таких систем в музее-усадьбе можно сделать вывод, что системы, базирующиеся на протоколе X10, являются оптимальными для проектов такого рода.
Принимая во внимание низкую стоимость оборудования, простоту инсталляции, большую расширяемость и высокую экономическую эффективность, системы управления на базе протокола X10 можно смело рекомендовать для использования в проектах по автоматизации музейных сооружений или в помещениях, не имеющих возможности проведения дорогостоящих реконструкций или прокладки новых коммуникаций.