Смекни!
smekni.com

Оптическая спектроскопия кристаллов галита с природной синей окраской (стр. 5 из 10)

3.3. Примесной состав галита

Для определения примесных химических элементов в образцах (синем и прозрачном) галита из Соликамска и Польши использовался полуколичественный спектральный эмиссионный анализ. Пластинки синей и прозрачной разности после обогащения дробились, а затем измельчались в яшмовой ступке до состояния слипающейся пудры. Слипающаяся пудра растиралась дополнительно около 15 минут для наиболее полного и тщательного измельчения. Полуколичественный спектральный анализ проводился в лаборатории спектрального анализа.

Результаты анализа проиллюстрированы в таблице 2. Соль из Польши имеет значительно меньшее количество примесей в сравнении с солью Соликамска. В синей разности Польского образца примесей в несколько раз меньше чем в прозрачной. Однако в образцах из Соликамска подобное наблюдается не всегда. В основном синяя соль чище, чем прозрачная.

Из примесных химических элементов, обнаруженных в исследуемых образцах, наибольший вклад в суммарную концентрацию несут такие элементы как: Si-0,25 г/т в образце Соликамск1, Mg-0,15 г/т в Соликамске4, Ti-0,025 г/т и La-0,02 г/т в Соликамске2. Других элементов, концентрации которых возможно внесли бы более весомый вклад в сумму концентраций примеси, проведенным методом обнаружено не было. В заметке П.Н.Чирвинского о синей каменной соли Соликамского месторождения [14], можно найти результат анализа синей соли: NaCl - 98.17, KCl+RbCl - 0.54, MgCl2 0.07. Из этого результата можно почерпнуть наличие рубидия и калия, радиоактивные долгоживущие изотопы которых могли быть теми элементами, излучение которых в течение длительного времени, привело к образованию центров окраски - F-агрегатных центров.

Таблица 2

Концентрация примесных химических элементов в г/т в образцах соли из Соликамска и Польши.

Синяя соль Бесцветная соль
Польша Сол-ск1 Сол-ск2 Сол-ск3 Сол-ск4 Польша Сол-ск1 Сол-ск2 Сол-ск3 Сол-cк4
Mn ----- ----- ----- <0.0002 ----- 0,001 ----- <0,0002 <0.0002 <0,0002
Mo ----- 0,0001 ----- ----- ----- 0,0001 0,0001 0,0001 ----- -----
Cu ----- 0,0001 ----- ----- ----- 0,001 ----- 0,0004 0,0002 <0,0001
Zn ----- 0,025 0,008 0,009 0,008 ----- 0,004 0,005 0,009 0,004
Ti 0,002 0,025 0,009 0,01 0,01 0,01 0,002 0,015 0,015 0,009
Zr ----- <0,001 ----- ----- <0,001 ----- <0,001 <0,001 <0,001 <0,001
Mg 0,004 0,02 0,02 0,04 0,02 0,01 0,015 0,04 0,15 0,03
Si ----- 0,25 0,009 0,04 0,02 ----- 0,009 0,1 0,1 0,02
Al 0,001 0,015 0,001 0,004 0,004 0,01 0,004 0,015 0,009 0,004
Fe ----- 0,0025 0,001 0,0025 0,0009 ----- 0,001 0,008 0,0025 0,0025
Ca ----- <0,008 <0,008 <0,008 <0,008 ----- 0,008 0,008 0,008 <0,008
Sr 0,001 <0,001 <0,001 <0,001 <0,001 0,001 0,002 0,002 0,001 0,001
Ba 0,001 0,002 0,002 0,002 0,002 0,001 0,002 0,002 0,002 0,002
Y ----- <0,002 ----- ----- ----- ----- ----- ----- ----- -----
La <0,004 0,02 0,004 0,008 0,004 0,004 <0,004 0,009 0,009 0,004
0,01 0,4 0,05 0,12 0,07 0,04 0,05 0,2 0,3 0,08

3.4. Спектроскопия оптического поглощения

3.4.1. Аппаратура, используемая для получения спектров поглощения

Для получения спектров оптического поглощения применяется прибор SPECORD UV VIS - автоматический регистрирующий двухлучевой спектрофотометр для абсорбционных измерений в ультрафиолетовой и видимой зонах спектра. В качестве приемника излучения применяется фотоумножитель, на который попеременно падают световой поток сравнения и световой поток, ослабленный исследуемой пробой. После усиления сигнал в виде спектра отображается на ленте самописца или накапливается на магнитном носителе управляющей ЭВМ.

Для измерения спектров оптического поглощения были использованы синие и прозрачные пластинки образцов галита толщиной от 0,5 до 2,5 мм и площадью около 3 см2. Из одной пробы было приготовлено по несколько пластин. Съемка спектров поглощения производилась с записью на магнитный носитель компьютером ДВК 4, в режиме измерения оптической плотности. Спектральные массивы в дальнейшем обрабатывались на компьютере IBM с применением специальных программ построения спектра и стандартных программ типа Origin и Excel. Они пересчитывались в коэффициенты поглощения k (мм-1). Спектры оптического поглощения всех пластин представлены на рис.1 Приложения.

3.4.2. Спектры оптического поглощения
и центры окраски в природном галите

Спектры синей и бесцветной соли, полученные на различных пластинках из цветовых разностей одного образца, для дальнейшего анализа были усреднены. Они отдельно представлены на рис.5. В образце Соликамск4 присутствовали две сильно отличные синие разности. Первая имеет светло-голубую окраску, вторая имеет темно-синюю, насыщенную окраску. Основную массу образца слагает первая разность, вторая находится в виде вкраплений. Для данных разностей приведены отдельные спектры. Из спектров видно, что все окрашенные образцы имеет подобные многокомпонентные спектры. Спектры прозрачных образцов максимумов не имеют - коэффициент поглощения в них плавно возрастает в высокоэнергетической области спектра, соответствующей УФ области спектра. Этот подъем обусловлен рэлеевским рассеянием, интенсивность которого растет пропорционально -4.

Рис.5. Все разновидности спектров оптического поглощения образцов из Соликамска и Польши.

Для получения спектрального состава поглощения в синей соли и нахождения точного положения полос спектры поглощения были разложены на отдельные Лоренцевы составляющие:

(3.5),

где Аi - площадь под i-той полосой , Wi -ее полуширина, Eimax - положение максимума данной полосы, n - количество лоренцевых составляющих. Пример такого разложения показан на рис.6., разложенные спектры всех образцов даны на рис.2 Приложения.

Спектры оптического поглощения синих образцов, после разложения на отдельные Лоренцевы составляющие, имеют пять общих максимумов с примерными положениями 1.9, 2.4, 2.8, 3.4, 3.6эВ. В спектре оптического поглощения образца синей разности Соликамск1 выделены полосы 1.95, 2.43, 2.88, 3.37, 3.70эВ, что соответствует 634, 509, 429, 367, 334нм. В спектре синего образца Соликамск2 выделяются максимумы при 2.00, 2.42, 3.39 и 3.67эВ. Соответствующие им значения в нм - 618, 511, 365, 337. Максимум в полосе 2.8эВ данным разложением выделить не удалось. Разложение на отдельные Лоренцевы составляющие спектра оптического поглощения синего образца Соликамск3 показало наличие максимумов в полосе 2.03, 2.44, 3.42эВ, соответственно 609, 507, 361нм. В спектре этого образца отсутствуют полосы поглощения 2.8 и 3.4эВ. Спектр поглощения образца Соликамск4 темно-синего цвета отличается от спектра образца Соликамск4 и от всех других образцов. Форма первой полосы отличается от других образцов своей закругленностью. что, вероятно, связано с ее неэлементарностью. В этом образце выделены следующие полосы: 1.99, 2.42, 2.84, 3.20, 3.49эВ, что соответствует 621, 511, 435, 386, 354нм. В спектре оптического поглощения синего образца Соликамск4 выделены полосы: 2.04, 2.48, 2.90, 3.39, 3.64эВ и соответственно им 606, 498, 426, 365, 340нм. Спектр оптического поглощения синего образца из Польши содержит полосы поглощения :1.89, 2.37, 2.79, 3.22, 3.57эВ, что соответствует 654, 522, 443, 384, 346нм.

Рис.6. Декомпозиция спектров оптического поглощения Польской синей каменной соли.

Анализ полученных спектров поглощения позволяет сделать следующие выводы:

1) Спектры оптического поглощения прозрачных бесцветных образцов не имеют максимумов поглощения, но наблюдается его общий рост в УФ полосе, что очевидно связано с рассеянием света на включениях. Коэффициенты поглощения варьируют в диапазоне 0,07 - 0,25 мм-1 - 0,1 - 0,6 мм-1.

2) В спектрах оптического поглощения окрашенных образцов присутствуют полосы с положением максимумов:

1. 1.84-2.04эВ (654-606нм)

2. 2.37-2.48эВ (522-498нм)

3. 2.79-2.90эВ (443-426нм)

4. 3.20-3.42эВ (386-361нм)

5. 3.49-3.70эВ (354-334нм)

К. Пшибрамом [11] производится следующая интерпретация в обозначении максимумов - диапазон 1.84-2.04эВ приписывается к коллоидным частицам, 2.37-2.48эВ к R-центрам, 2.79-2.90эВ к F-центрам, 3.20-3.42эВ к V1-центрам, 3.49-3.70эВ к V2-центрам. Центры R, M, N, являются F-агрегатными центрами, схематическое изображение их структуры представлено на рис.7.