Смекни!
smekni.com

Оптимизация работы силовых трансформаторов (стр. 3 из 5)

Известно, что токи в параллельных ветвях распределяются обратно пропорционально их сопротивлениям [2]

(4)

Умножим обе части равенства на IIIномUном/(IIномUном), левую часть — на Uном/Uном , а правую часть — на 100/100, получим [2]

Рисунок 2 – К понятию о распределении нагрузки при параллельной работе трансформаторов

Затем преобразуем полученное равенство, имея в виду следующее: IIUном = SI и IIIUном = SII - фактическая нагрузка первого и второго трансформаторов соответственно, В·А; IIномUном = SIном и IIIномUном = SIIном - номинальные мощности этих трансформаторов, В·А; (IIномZkI/Uном)100 = uIk и (IIIномZkII/Uном)100 = uIIk - напряжения короткого замыкания трансформаторов, %. В результате получим [2]

(5)

или

(6)

где

,
- соответственно относительные мощности (нагрузки) первого и второго трансформаторов.

Из соотношения (6) следует, что относительные мощности (нагрузки) параллельно работающих трансформаторов обратно пропорциональны их напряжениям короткого замыкания. Другими словами, при неравенстве напряжений короткого замыкания параллельно работающих трансформаторов больше нагружается трансформатор с меньшим напряжением короткого замыкания. В итоге это ведет к перегрузке одного трансформатора (с меньшим напряжением короткого замыкания) и недогрузке другого (с большим напряжением короткого замыкания). Чтобы не допустить перегрузки трансформатора, необходимо снизить общую нагрузку. Таким образом, неравенство напряжений короткого замыкания не допускает полного использования по мощности параллельно работающих трансформаторов [2].

Учитывая, что практически не всегда можно подобрать трансформаторы с одинаковыми напряжениями короткого замыкания, ГОСТ допускает включение трансформаторов на параллельную работу при разнице напряжений короткого замыкания не более чем 10% от их среднего арифметического значения. Разница в напряжениях короткого замыкания трансформаторов тем больше, чем больше эти трансформаторы отличаются друг от друга по мощности. Поэтому ГОСТ рекомендует, чтобы отношение номинальных мощностей трансформаторов, включенных параллельно, было не более чем 3:1 [2].

Помимо соблюдения указанных трех условий необходимо перед включением трансформаторов на параллельную работу проверить порядок чередования фаз, который должен быть одинаковым у всех трансформаторов [2].

Соблюдение всех перечисленных условий проверяется фазировкой трансформаторов, сущность которой состоит в том, что одну пару, противоположно расположенных зажимов на рубильнике (рисунок 1), соединяют проводом и вольтметром V0 (нулевой вольтметр) измеряют напряжение между оставшимися несоединенными парами зажимов рубильника. Если вторичные напряжения трансформаторов равны, их группы соединения одинаковы и порядок следования фаз у них один и тот же, то показания вольтметра V0 равны нулю. В этом случае трансформаторы можно подключать на параллельную работу. Если вольтметр V0 покажет некоторое напряжение, то необходимо выяснить, какое из условий параллельной работы нарушено. Необходимо устранить это нарушение и вновь провести фазировку трансформаторов [2].

Следует отметить, что при нарушении порядка следования фаз вольтметр V0 покажет двойное линейное напряжение. Это необходимо учитывать при подборе вольтметра, предел измерения которого должен быть не менее двойного линейного напряжения на вторичной стороне трансформаторов [2].

Общая нагрузка всех включенных на параллельную работу трансформаторов S не должна превышать суммарной номинальной мощности этих трансформаторов [2]

(7)

Распределение нагрузки между параллельно работающими трансформаторами определяется следующим образом [2]

(8)

где Sx — нагрузка одного из параллельно работающих трансформаторов, кВ·А;

S — общая нагрузка всей параллельной группы, кВ·А;

ukx —напряжение к.з. данного трансформатора, %;

Sном х — номинальная мощность данного трансформатора, кВ·А.

В выражении (8) [2]

. (9)

К мерам по защите трансформаторов от перенапряжений относятся внешняя защита – применение заземленных тросов и вентильных разрядников (эти меры позволяют ограничить амплитуду волн напряжения, подходящих к трансформатору) и внутренняя защита – усиление изоляции входных витков; установка емкостных колец и электростатических экранов (емкостная компенсация); применение обмоток с пониженным значением коэффициента

(здесь Сq – паперечная емкость, Сd – продольная емкость). Цель последних двух мероприятий внутренней защиты сводится к сближению начального и конечного распределения напряжения. При этом практически устраняется переходной колебательный процесс [2].

Емкостные кольца представляют собой разомкнутые шайбообразные экраны, изготовляемые из метализированного электрокартона. Этими кольцами покрывают

начало и конец обмотки [2].

Уменьшение неравномерности начального распределения напряжения и сближение его с конечным распределением достигаются применением в трансформаторах дополнительных электростатических экранов в виде разомкнутых металлических колец (витков), охватывающих начальную часть обмотки и соединенных с ее выводом. Такой экран создает дополнительные емкости Сэ, через которые заряжаются поперечные емкости Сq в обход продольных емкостей Сd [2].

Трансформаторы с изолированной нейтралью также могут снабжаться электростатическими экранами, но в этом случае применяют специальные устройства – импидоры, включаемые между нейтралью и землей. Это устройство содержит емкость, включенную параллельно разряднику и реактору, которая при волновых процессах заземляет нейтраль трансформатора, а при промышленной частоте имеет большое сопротивление и практически изолирует нейтраль [2].

3 Нормирование и снижение потерь электроэнергии: результаты, проблемы, пути решения

С точки зрения снижения расхода электроэнергии на собственные нужды подстанций необходимо обратить внимание в первую очередь на оптимизацию работы системы охлаждения силовых трансформаторов, автотрансформаторов и шунтирующих реакторов. В настоящее время разработаны микропроцессорные устройства, способные в зависимости от температуры воздуха и температуры масла в баках оптимизировать длительность работы охладителей и уменьшить расход электроэнергии на обдув электрических аппаратов. Имеются разработки по вторичному использованию теплоты нагрева силовых трансформаторов и автотрансформаторов для отопления зданий управления подстанций. Необходимо закончить работу по разделению учета электроэнергии на собственные и хозяйственные нужды подстанций, по недопущению подключения к трансформаторам собственных нужд потребителей, не имеющим к ним никакого отношения [6].

Существенное снижение потерь электроэнергии может дать выполнение некоторых профилактических работ под напряжением без их отключения, т.к. любой ремонтный режим, как правило, увеличивает потери в сети по сравнению с нормальным режимом [6].

Потери электроэнергии в трансформаторах значительны и их необходимо снижать до возможного минимума путем [7]:

- правильного выбора мощности и числа трансформаторов;

- рационального режима их работы;

- исключения холостых ходов при малых нагрузках.

Число одновременно работающих трансформаторов определяет дежурный персонал в зависимости от нагрузки из условий наименьших потерь электроэнергии в трансформаторах [7].

Практика эксплуатации отдает предпочтение трансформаторам мощностью 1000 кВ·А, считая эту мощность оптимальной [7].

Наиболее эффективные мероприятия по снижению потерь электроэнергии в распределительных сетях связаны в основном со снижением коммерческих потерь, совершенствованием и автоматизацией учета электроэнергии, исключением потребителей из процесса снятия показаний приборов учета, с их защитой от несанкционированного доступа и от безучетного потребления электроэнергии. Опыт передовых сетевых компаний показывает, что применение выносных систем учета электроэнергии в совокупности с заменой голых проводов на изолированные на вводах в здания снижают коммерческие потери в сетях на 10–30 % и окупаются за срок не более 2 лет [6].

Основным и наиболее эффективным мероприятием по снижению технических потерь электроэнергии является компенсация реактивной мощности в электрических сетях и у потребителей, а также ряд других мероприятий, которые окупаются, а сроки, приемлемые для инвесторов программ снижения потерь. Чем меньше срок окупаемости, тем выше приоритет внедрения данного мероприятия [6].

Наиболее экономичной по ежегодным издержкам и потерям будет работа трансформатора в часы максимум – работа с перегрузкой. В реальных условиях значение допустимой нагрузки выбирают в соответствии с графиком нагрузки и коэффициентом начальной нагрузки и в зависимости от температуры окружающей среды [5].

Значительную экономию электроэнергии в трансформаторах можно получить, использовав экономически целесообразный режим их работы. Суть этого режима состоит в том, что в зависимости от суммарной нагрузки в работе будет находиться определенное число одновременно работающих трансформаторов, обеспечивающих минимум потерь электроэнергии в этих трансформаторах (или минимум приведенных затрат) [7].