К группе деформируемых упрочняемых сплавов сплавов относят также более высокопрочные, чем дюралюминий, сплавы системы Al-Cu-Mg-Zn, название марок которых начинаются буквой В (высокопрочные)-это сплавы марок В93, В94, В95.
Характерной особенностью осноного химического состава сплавов В93, В94 и В95 является то, что при сравнительно небольшом содержании меди (0.8-2.4 %) и магния (1.2-2.8 %) в них вводят большое количество цинка (5-7 %). Цинк не образует упрочняющих фаз, но, входя в состав твердого раствора, увеличивает эффект старения, что приводит к значительному повышению твердости.
Среди неупрочняемых алюминиевых сплавов наибольшее значение приобрели сплавы на основе Al-Mn и Al-Mg.
Марганец и магний, так же как и медь, имеют ограниченную растворимость в алюминии, уменьшающуюся при снижении температуры. Однако эффект упрочнения при их термообработке невелик. Обьясняется это следущим образом.
В процессе кристаллизации при изготовлении сплавов, содержащих до 1,9% Mn, выделяющийся из твердого раствора избыточный марганец должен был бы образовать с алюминием растворимое в нем химическое соединение Al (MnFe), которое в алюминии не растворяется. Следовательно, последующий нагрев выше линии предельной растворимости не обеспечивает образование гомогенного твердого раствора, сплав остается гетерогенным, состоящим из твердого раствора и частиц Al (MnFe), а это приводит к невозможности закалки и последущего старения.
В случае системы Al-Mg причина отсутствия упрочнения при термической обработке иная. При содержании магния до 1,4% упрочнения быть не может, так как в этих пределах он растворяется в алюминии при комнатной температуре и никакого выделения избыточных фаз не происходит. При большем же содержании магния закалка с последущим химическим старением приводит к выделению избыточной фазы-химического соединения Mg Al . Однако свойства этого соединения таковы, что процессы, предшествующие его выделению, а затем и образующиеся включения не вызывают заметного эффекта упрочнения.
Несмотря на сказанное, введение и марганца, и магния в алюминий полезно. Они повышают его прочность и коррозионную стойкость (при содержании магния не более 3%). Кроме того, сплавы с магнием более легкие, чем чистый алюминий.
Значительное повышение прочности сплавов алюминия с марганцем и магнием может быть достигнуто путем их пластической деформации. Наклепанные (нагартованные) изделия из этих сплавов обладают существенно более высокой прочностью, чем в отожженном состоянии. В сплаве АМц, например, при поклепе временное сопротивление повышается с 13 до 22 кГ/мм .
Название марок сплавов системы Al-Mn обозначают буквами АМц, а системы Al-Mg буквами АМг, далее в обоих случаях следует цифра, указывающая номер сплава.
Для получения литейных сплавов в алюминий вводят такие легирующие элементы и в таком количестве, чтобы обеспечить получение в их структуре эвтектики. Эвтектика легкоплавка и кристаллизуется при постоянной температуре, что создает хорошую жидкотекучесть, т.е. способность сплава в жидком состоянии хорошо заполнять литейную форму.
Применяемые в настоящее время литейные алюминиевые сплавы, делят на пять групп в зависимости от того, какой основной легирующий элемент введен в них. К группе 1 относят сплавы, легированные магнием, к группе 2-кремнием, 3-медью, 4-одновременно кремнием и медью, к группе 5 относят сплавы, легируемые другими элементами, включающие в свой состав иногда до пяти легирующих компонентов одновременно.
Марки литейных сплавов независимо от их принадлежности к той или иной группе обозначают буквами АЛ (алюминиевый литейный) и номером.
Наиболее характерные составы литейных алюминиевых сплавов всех пяти групп приведены в таблице. Там же указаны и другие марки сплавов, относящихся к каждой из этих групп.
Груп-паспла-вов | Сплавы | Основной химический __________________________Mg | Si | Cu| | | состав,%________Zn | ________Ni | Перечень | марок |входящих в|группу | |
12345 | АЛ8АЛ2АЛ7АЛ3АЛ1АЛ11АЛ26 | 9,5-11,5| - | -| || || || || || |- | 10-13 | -| |- | - | 4-5| |0,35-0,6|4,5-5,5 |1,5-3,0 | | | | | | | |1,2-1,75| - |3,75-4,5 | | | |0,1-0,3|6,0-8,0 | -| || |0,4-0,7| 20-22 | 1,5-2,5 | -----7-12- | ---1,75-2,3-1,0-2,0 | АЛ13, |АЛ22, |АЛ23, |АЛ27, |АЛ28, |АЛ29, | |АЛ4,АЛ9 | |АЛ19 | |АЛ5,АЛ6, | АЛ10, | АЛ14, | АЛ15 ||АЛ16, |АЛ17, |АЛ18, |АЛ20, |АЛ21, |АЛ24, |АЛ25, | |
Сплав алюминия с высоким содержанием магния (марка АЛ8) обладает наиболее высокими механическими и антикоррозионными свойствами среди литейных сплавов, но его литейные свойства существенно хуже, чем у других. Отливка изделий из него сопряжена с определенными технологическими трудностями.
Литейные сплавы с высоким содержанием кремнием часто называют силуминами, т.е. так же, как и сырьевые двойные сплавы алюминия с кремнием. Нормальный силумин АЛ2, содержащий 10-13% Si, является сплавом с прекрасными литейными свойствами, но он недостаточно прочен и не может упрочняться путем термической обработки, так как кремний почти нерастворим в алюминии. В его структуре на фоне грубой эвтектики находятся крупные весьма твердые включения первичного кремния, что делает сплав малопластичным. Во избежания этого структуру измельчают путем модифицирования-введением перед отливкой незначительных количеств, например натрия. Такой сплав называют модифицированным силумином.
Для повышения прочности силумина содержание кремния в нем снижают до 4,5-5,5%, но дополнительно вводят легирующие добавки меди, марганца и магния, например марка АЛЗ. Это делает его и более прочным и упрочняемым при закалке и старении.
Силумин марки АЛ11, содержащий большое количество цинка, обладает особенно высокой жидкотекучестью; его применяют для получения отливок очень сложной конфигурации.
Легирование заметно улучшает свойства алюминия. Так только временное сопротивление алюминия разрыву повышается с 10 до 22 кГ мм в дюралюминии марки Д16. В состоянии же максимального упрочнения прочность некоторых сплавов повышается до 58 кГ мм .
Высокий уровень механических свойств в сочетании с низкой удельной плотностью обеспечивает очень широкое применение алюминиевых сплавов в самых разнообразных отраслях, особенно в самолетостроении, авиамоторостроении, транспортном машиностроении и др., где от снижения массы конструкции увеличивается ее полезная мощность.
Алюминиевая промышленность относительно новая, самая крупная и быстрее всех растущая среди основных подотраслей цветной металлургии, а вместе с тем и наиболее монополизированная. В конце 70-х годов почти половина всего производства первичного алюминия в несоциалистических сранах была сосредоточена на заводах трех американских ("Алкоа", "Рейнолдз металз" и "Кайзер алюминиум") и одной канадской ("Алкан") монополий, тесно связанной с американским капиталом. Они не только господствуют в алюминиевой промышленности США и Канады, но и захватили важные позиции в ряде европейских государств (особенно сильны они в Норвегии), в Японии и Австралии, в бокситодобывающих странах Центральной Америки и Африки. Предприятия широкоизвестных монополий французкой "Пешине С. А.", швейцарской "Алюсюис", западногерманской "Ферайнигте Алюминиумверке А. Г." и трех японских дают более 1 5 производства алюминия в развитых капиталистических странах.
В 1950 г. алюминиевые заводы имелись в 12 промышленно развитых капиталистических странах и лишь в одной развивающейся, причем 99% выплавки было сконцетрировано в шести главных капиталистических странах и четырех, где основную роль в электроэнергетики играли ГЭС-в Канаде, Норвегии, Австрии и Швейцарии. К 1977 г. доля последних четырех государств в мировом капиталистическом производстве упала более чем вдвое (до 8.9%), а число стран, производящих алюминий, превысило 30; среди них одиннадцать развивающихся: Гана, Индия, Бразилия, Бахрейн (c производством свыше 100 тыс. т год), Аргентина, Суринам, Камерун (свыше 50 тыс. т), Венесуэла, Мексика, Иран, Южная Корея. Алюминиевой промышленностью обзавелись Австралия, Новая Зеландия, ЮАР и Исландия. Она теперь есть в преобладающем большинстве западноевропейских государств. Однако все вместе взятые, появившиеся после 1950 г., 19 новых производителей алюминия дают его меньше, чем одна Япония, опередившая по масштабам производства Канаду. Из европейских государств бедная гидроресурсами ФРГ опередила не только Францию и Италию, но и Норвегию, а Нидерланды производят теперь больше алюминия, чем альпийские Швейцария и Австрия вместе взятые. Эти изменения-отчасти результат снижения удельной элекроемкости алюминиевого производства (с 22-25 тыс. кВт ч на 1 кг до 11-12 тыс. на новейших предприятиях подотрасли), а главным образом-изменившейся ситуации в электроэнергетике большинства государств: резкого падения доли ГЭС в электробалансе и переводе их в этой связи на работу преимущественно в пиковом и полупиковом режиме; кроме того, благодаря техническому прогрессу, удешевилась выработка элекроэнергии на ТЭС, особенно работающих на дешевом топливе. В большинстве экономически развитых стран новые алюминиевые заводы локализуют в расчете на собственные топливные базы (например, в Руре) или на привозное топливо (близ Гамбурга, в портах Японии); в Великобритании построен даже завод в расчете на получение электроэнергии от АЭС (на о-ве Энглси).
Большинство развитых капиталистических государств, в том числе все шесть главных держав, хотя и покрывают основную часть внутреннего спроса на алюминий собственным производством, являются все же его нетто-импортерами. Важнейшими нетто-экспортерами остались Канада и Норвегия. К числу "новых" экспортеров алюминия относятся-Гана, Камерун, Суринам, с недавних пор Новая Зеландия, Исландия и вовсе не богатые гидроэнергоресурсами Нидерланды, Греция, и Бахрейн и некоторые другие страны Ближнего Востока.