Смекни!
smekni.com

Свойства алюминия (стр. 3 из 7)

Боксит поставляют в кусках размером не более 500 мм. Перевозят его навалом на платформах или в гондолах.

Н е ф е л и н Na(AlSiO )-минерал светло-серого или зеленоватого цвета. Твердость 5.5-6. Содержит 30-40% Al O . Используют нефелин как

металлургическую руду для последовательного извлечения глинозема и

алюминия, а также в химической, стекольной и кожевенной промышленно­сти.

А л у н и т (квасцовый камень) KAl (SO ) (OH) -минерал белого, се­рого или красноватого цвета. Твердость 3.5-4.0. Содержит 37 % Al O .

Служит для получения квасцов, глинозема и калиевых солей.

К а о л и н Al O 2SiO 2H O-распространенная горная порода. По внешнему виду это белая землянистая масса, являющаяся продуктом раз-

рушения кристаллических пород-гранитов, гнейсов и др. Твердость около

1, содержит 37.5 % Al O . Каолин применяют для производства фарфоро­вых и фаянсовых изделий, изоляторов, а также как наполнитель в рези­новой промышленности.

Г л и н о з е м Al O является концетратом, получаемым из различ­ных алюминиевых руд. Его поставляют в виде белого кристаллического

порошка.

Глинозем является основным сырьем для получения металлического алю­миния. Кроме того, его используют и в других отраслях промышленности­абразивной, радио и др. У нас в стране производят глинозем восьми ма­рок, физико-химическим составом и назначением.

Для производства первичного алюминия предназначен глинозем марок ГА85, ГА8, ГА6 и ГА5. Буквенная часть марок указывает на область при­менения глинозема, а цифры-на степень чистоты получаемого алюминия: это сотые и десятые доли процента сверх 99 %. Например, марка ГА85- глинозем для получения алюминия со степенью чистоты 99.85 %, а марка ГА5-то же, но со степенью чистоты 99.5 %.

Для производства белого электрокорунда применяют глинозем марки

ГЭ5, высокоглиноземистых огнеупоров-ГО, электроизоляционных изделий-

ГК и для электровакуумной промышленности и специальных видов радиоке­рамики-ГЭВ.

В глиноземах всех назначений нормируются потери при прокаливании

(в разных марках от 0.4 до 1.2 %), содержание кремнезема (от 0.03 до

0.5 %), окиси железа (от 0.035 до 0.1 %) и окиси щелочных металлов

(от 0.1 до 0.6 %).

Влага, удаляемая при 120 C, не нормируется.

Как уже сказано, по физическому состоянию глинозем имеет вид порош­ка. Особенно строгие требования по гранулометрическому составу предь­являют к глинозему марки ГЭВ, в котором частицы должны иметь округлую форму и их размер не должен превышать 3 мкм.

Глинозем марок ГК и ГЭВ при поставке обязательно упаковывают в мно­гослойные бумажные мешки или в сухие мешки из плотной ткани. Перево­зят их в закрытых железнодорожных вагонах и трюмах. Глинозем осталь­ных шести марок можно упаковывать в мешки, но чаще его перевозят без тары навалом в специальных (цементовозах, цистернах и т.д.).

Прочность алюминия незначительна, поэтому для изготовления любых из­делий,предназначенных к восприятию внешних сил, применяют не чистый алюминий, а его сплавы, которых в настоящее время разработано достато­чно много марок.

Введение различных легирующих элементов в алюминий существенно изме­няет его свойства, а иногда придает ему новые специфические свойства. При различном легировании повышаются прочность, твердость, приобрета­ется жаропрочность и другие свойства. При этом происходят и нежелате­льные изменения: неизбежно снижается электропроводность, во многих случаях ухудшается коррозионная стойкость, почти всегда повышается от­носительная плотность. Исключение составляет легирование марганцем, который не только не снижает коррозионную стойкость, но даже несколь­ко повышает ее, и магнием, который тоже повышает коррозионную стой­кость (если его не более 3 %) и снижает относительную плотность, так как он легче, чем алюминий.

Алюминиевые сплавы по способу изготовления из них изделий делят на две группы: деформируемые и литейные. Такое деление отражает основные технологические свойства сплавов: деформируемые имеют высокую пластич­ность в нагретом состоянии, а литейные-хорошую жидкотекучесть. Для по­лучения этих свойств в алюминий вводят разные легирующие элементы и в неодинаковом количестве.

Сырьем для получения сплавов обоего типа являются не только техниче­ски чистый алюминий, о котором речь шла выше, но также и двойные спла­вы алюминия с кремнием, которые содержат 10-13 % Si, и несколько отли­чаются друг от друга количеством примесей железа, кальция, титана и марганца. Общей содержание примесей в них 0.5-1.7 %. Эти сплавы назы­вают силуминами и маркируют у нас в стране СИЛ-00 (наиболее чистый по примесей), СИЛ-0, СИЛ-1 и СИЛ-2. Поставляют их в виде гладких чушек или чушек с пережимами массой 6 и 14 кг. Силумин в чушках тоже явля­ется товаром на мировом рынке.

Для получения деформируемых сплавов в алюминий вводят в основном ра­створимые в нем легирующие элементы в количестве, не превышающем пре­дел их растворимости при высокой температуре. В них не должно эвтекти­ки, которая легкоплавка и резко снижает пластичность.

Деформируемые сплавы при нагреве под обработку давлением должны иметь гомогенную структуру твердого раствора, обеспечивающую наиболь­шую пластичность и наименьшую прочность. Это и обусловливает их хоро­шую обрабатываемость давлением.

Основными легирующими элементами в различных деформируемых сплавах является медь, магний, марганец и цинк, кроме того, в сравнительно не­больших количествах вводят также кремний, железо, никель и некоторые другие элементы.

Деформируемые алюминиевые сплавы делят на упрочняемые и неупрочняе­мые. Это наименование отражает способность или неспособность сплава заметно повышать прочность при термической обработке.

Структурные превращения, происходящие в алюминиевых сплавах при их термической обработке, существенно отличается от таковых в стали пото­му, что алюминий не имеет аллотропического превращения. В них повыше­ние прочности может происходить только за счет процессов, связанных с выделением из перенасыщенного в результате закалки твердого раствора каких-то упрочняющих фаз.

Характерными упрочняемыми сплавами являются дюралюминии-сплавы алю­миния с медью, которые содержат постоянные примеси кремния и железа и могут быть легированы магнием и марганцем. Количество меди в них нахо­дится в пределах 2.2-7 %.

Название марок дюралюминия начинается буквой Д, затем идет цифра, которая не отражает химического состава, а представляет собой просто номер. В разное время было разработано много марок дюралюминия, но многие из них не нашли широкого применения. Сейчас промышленность вы­пускает пять основных марок дюралюминия, химический состав которых приведен в таблице.

|||| |Дюралюми-| ний || Основной химический состав, % ____________________________________________Cu | Mn | Mg | Si,не| | | более |___________|Fe,не | более |
||| Д1...... | |Д16..... | 3,8-4,8 | 0,4-0,8 | 0,4-0,8 | 0,7 | | |3,8-4,9 | 0,3-0,9 | 1,2-1,8 | 0,5 0,7 | |0,5 |
||| Д18..... | |Д19..... | 2,2-3,0 | <0,2 | 0,2-0,5 | 0,5 | | |3,8-4,3 | 0,5-1,0 | 1,7-2,3 | 0,5 0,5 | |0,5 |
| Д20..... | 6,0-7,0 | 0,4-0,8 | <0,05 | 0,3 0,3 |

Медь растворяется в алюминии в количестве 0,5% при комнатной темпе­ратуре и 5,7% при эвтектической температуре, равной 548 C .

Термическая обработка дюралюминия состоит из двух этапов. Сначала его нагревают выше линии предельной растворимости (обычно приблизи­тельно до 500 C ). При этой температуре его структура представляет со­бой гомогенный твердый раствор меди в алюминии. Путем закалки, т.е. быстрого охлаждения в воде, эту структуру фиксируют при комнатной тем­пературе. При этом раствор получается пересыщенным. В этом состоянии, т.е. в состоянии закалки, дюралюминий очень мягок и пластичен.

Структура закаленного дюралюминия имеет малую стабильность и даже при комнатной температуре в ней самопроизвольно происходят изменения. Эти изменения сводятся к тому, что атомы избыточной меди группируются в растворе, располагаясь в порядке, близком к характерному для крис­таллов химического соединения CuAl . Химическое соединение еще не об­разуется и тем более не отделяется от твердого раствора, но за счет неравномерности распределения атомов в кристаллической решетке твердо­го раствора в ней возникают искажения, которые приводят к значительно­му повышению твердости и прочности с одновременным снижением пластич­ности сплава. Процесс изменения структуры закаленного сплава при ком­натной температуре носит название естественного старения.

Естественное старение особенно интенсивно происходит в течение пер­вых нескольких часов, полностью же завершается, придавая сплаву макси­мальную для него прочность, через 4-6 суток. Если же сплав подогреть до 100-150 C ,то произойдет искуственное старение. В этом случае про­цесс совершается быстро, но упрочнение происходит меньшее. Обьясня­ется это тем, что при более высокой температуре диффузионные переме­щения атомов меди осуществляются более легко, поэтому происходит за­вершенное образование фазы CuAl и выделение ее из твердого раствора. Упрочняющее же действие полученной фазы оказывается меньшим, чем дей­ствие искаженности решетки твердого раствора, возникающей при естест­венном старении.

Сравнение результатов старения дюралюминия при различной температу­ре показывает, что максимальное упрочнение обеспечивается при естест­венном старении в течении четырех дней.

Близкими по химическому составу к дюралюминию, но в горячем состо­янии несколько более пластичными, чем они, являются алюминиевые спла­вы для поковок и штамповок, которые маркируют буквами АК (алюминий кованый) и порядковым номером (АК4, АК4-1, АК6 и АК8).