Смекни!
smekni.com

Лекции по статистике (стр. 5 из 5)

2. Коэффициент вариации по среднему линейному отклонению

3. Квартильное отклонение

.

9.Характеристики формы распределения вариационного ряда.

Существуют 2 основных характеристики: коэффициент ассиметрии и коэффициент эксцессов, которые характеризуют соответсвенно скошенность и крутость распределения.

Моментом порядка р распределения вариационного ряда называется

В зависимости от значения а общая схема моментов разбивается на 3 подсистемы.

1. а=0, получаем систему начальных моментов

2.

а=x, получаем систему центральных моментов

3. а=с=const, обычно С близкое к середине вариационного ряда. Получаем систему условных моментов. Она применяется для упрощения расчетов.

Центральные моменты 3 и 4 порядков используются для характеристики ассиметрии и эксцесса распределения вариационного ряда.

10.Сравнение эмпирического и теоретического распределений вариационных рядов.

1. дискретные вариационные ряды

Пусть имеется вариационный ряд. Предположим, что признак Х распределен по некоторому вероятностному закону Р.

Р:

х х1 х2 .... xk
р p1 p2 ..... pk

По теоретическому распределению Р можно построить так называемое выравнивающие или теоретические частоты

. Если отличия между теоретическими и эмпирическими частотами небольшое, то можно считать, что Х распределен по закону Р.

2. критерий согласия Пирсона

Объективную оценку близости эмпирических частот к теоретическим можно получить с помощью определенных критериев близости, называемых критериями согласия. Существует множество таких критериев. Критерий Пирсона основан на следующем:

.

Существуют значения (табличные) для соответствующего числа степеней свободы К и уровня значимости

. По таблице находятся

K=k-1-r, где r - число общих характеристик теоретического распределения, принятых равными соответствующим эмпирическим.

11.Оценивание параметров распределений по выборке. Доверительные интервалы.

1. требования к оценкам

Пусть требуется изучить количественный признак генеральной совокупности. Допустим из теоретических соображений удалось установить какое именно распределение имеет признак. Естественна задача оценки параметров этого распределения.

Требования к оценкам:

1. несмещенность или асимптотическая несмещенность

2. состоятельность

Требование состоятельности применяется к большим объемам.

3. эффективность

Эффективной называют оценку, которая при заданном объеме выборки n имеет min дисперсию.

2. надежность оценок

Оценку, определяемую одним числом называют точечной. При выборках малого объема точечная оценка может значительно отличаться от оцениваемого параметра, т.е. приводить к грубым ошибкам. По этой причине при небольших объемах выборки пользуются интервальными оценками, которые определяются 2 числами - концами интервала. Эти оценки позволяют установить точность и надежность оценок.

Пусть

=const,
тем точнее определяет
, чем меньше (
-
). Если есть величина
>0, (
-
)<
, то чем меньше
, тем точнее оценка.

- надежность оценки. Обычно надежность задается наперед
=95-99%. Величину
называют уровнем значимости.

, интервал
- доверительный. Концы этого интервала - случайные величины и называются доверительными границами, они могут меняться от выборки к выборке. Говорят, что наш доверительный интервал с вероятностью
покрывает
.