Смекни!
smekni.com

Лекции по статистике (стр. 2 из 5)

Определение.

Вариационным рядом называется последовательность различных вариант. записанных в возрастающем порядке вместе с соответствующими частотами. Вариационный ряд обычно записывается в одном из видов: в таблице с частотами mi, через относительные частоты Wi=mi/n. В зависимости от типа признака различают дискретные и интервальные вариационные ряды. В зависимости от объема исходных данных и области допустимых значений одномерного количественного признак, частотные распределения также подразделяются на дискретные и интервальные. Если различных вариант очень много (более 10-15), то эти варианты группируют, выбирая определенное число интервалов группировки и получая таким образом интервальное частотное распределение. Алгоритм группировки массива данных

состоит из следующих шагов:

1. находят минимальную и максимальную варианты

2. весь диапазон значений признака [Xmin,Xmax] разбивают на к интервалов одинаковой длины

.

Число К обычно берется в пределах 10-15. Редки случаи, когда требуется более 25 и менее 8 группировок. Существуют формулы для определения “оптимального” значения К и построения таким образом оптимального распределения частот. Формула Старджеса

. Для больших n эта формула дает оценку снизу для К.

3. находят граничные точки каждого из интервалов

и т.д.

4. подсчитываем число вариант Mi, попавших в интервал

, причем варианты, попавшие на границы интервалов, относят только к одному из интервалов, результат заносят в таблицу
.

Пример 2.

Приведем вариационный ряд почасовой оплаты 303 рабочих промышленности

Xi 2.49 2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59 2.6 2.61
Mi 1 4 1 1 0 3 2 0 3 2 1 8 1
2.62 3 2.72 9 2.82 11 2.92 6 3.02 2 3.12 0 3.22 1 3.32 1
2.63 0 2.73 3 2.83 3 2.93 2 3.03 0 3.13 0 3.23 0 3.33 0
2.64 5 2.74 10 2.84 4 2.94 4 3.04 3 3.14 2 3.24 0 3.34 2
2.65 7 2.75 11 2.85 7 2.95 8 3.05 4 3.15 4 3.25 3 3.35 2
2.66 3 2.76 4 2.86 5 2.96 5 3.06 2 3.16 2 3.26 1 3.36 0
2.67 2 2.77 2 2.87 3 2.97 2 3.07 0 3.17 0 3.27 0 3.37 1
2.68 3 2.78 9 2.88 8 2.98 3 3.08 2 3.18 2 3.28 0
2.69 2 2.79 5 2.89 4 2.99 1 3.09 0 3.19 1 3.29 0
2.70 14 2.8 22 2.90 16 3.0 9 3.10 7 3.20 4 3.30 4
2.71 4 2.81 3 2.91 3 3.01 1 3.11 0 3.21 0 3.31 0

Построим для данного ряда интервальное частотное распределение.

1. X min = 2,49 Xmax=3,37

2.

Для удобства вычислений возьмем К=10. и т.д.

Для наглядного представления дискретных частотных распределений могут применяться вертикальные линии. Каждый из примеров можно рассматривать либо как выборку, либо как генеральную совокупность. Обычно данные собирают и анализируют для практических результатов.

пример.

Абсолютное частотное распределение прибыли 100 крупных межнациональных компаний, базирующихся в США за 1988 г.

Класс компании, размер прибыли, млн.$ Число компаний в классе
-1500-0 3 |||
0-500 41 |||| |||| |||| |||| |||| |||| |||| |||| |||| |||| |
500 - 1000 32 |||| |||| |||| |||| |||| |||| |||| ||||
1000 - 1500 9 |||| |||| |
1500 - 2000 6 |||| ||
2000 - 2500 6 |||| ||
2500 - 5500 3 |||

3. Графическое изображение статистических данных.

Обычно табличное распределение частот дополняют его графическим представлением. Схематически все множество графических представлений статистических данных разделяют на два класса: диаграммы и линейные изображения. К классу линейных графиков относятся полигон, кумулятивная кривая, кривая концентрации, огива.

Полигоном частот называют ломаную, отрезки которой соединяют точки

Иногда крайние точки соединяют с точками, имеющими нулевую ординату.

пример. (с оценками)


Полигоном относительных частот называют ломаную, отрезки которой соединяют точки

.

Замечание.

Если на ось абсцисс наносить возможные исходы событий, а на ось ординат - вероятности этих исходов, то ломаная линия, характеризующая изменение вероятностей различных исходов событий при испытаниях называется полигоном распределения вероятностей.

Кумулятивная кривая (кривая сумм) - ломаная, составленная по последовательно суммированным, т.е. накопленным частотам или относительным частотам. При построении кумулятивной кривой дискретного признака на ось абсцисс наносятся значения признака, а ординатами служат нарастающие итоги частот. Соединением вершин ординат прямыми линиями получают кумуляту. При построении кумуляты интервального признака, на ось абсцисс откладываются границы интервалов и верхним значениям присваивают накопленные частоты. Кумулятивную кривую называют полигоном накопленных частот.

Если на ось ординат нанести значение признака, а накопленные частоты - на ось абсцисс, то получим кривую, называемую огивой.

Кривой концентрации или кривой Лоренца называют кривую относительной концентрации суммарного значения признака. Пусть имеется вариационный ряд, отражающий, например, частотное распределение семей по их доходам, где

число (процент) семей с доходом
. Тогда общий доход

- суммарный доход.

Относительный накопленный доход

Построение кривой Лоренца осуществляется следующим образом: по оси абсцисс откладывают накопленные относительные частоты, а по оси ординат накопленный относительный доход.


1. Если доход распределяется по семьям равномерно, то кривая Лоренца описывается прямой ОВ. Это означает, что 10% семей получают 10% общего дохода и т.д.

2. абсолютная (полная) концентрация задается ломаной ОАВ. Это означает, что преобладающее число семей ( например 99%) совсем не имеют дохода и только 1% имеет весь суммарный доход.

3. В промежуточных случаях между этими экстремальными графиками кривая Лоренца описывает увеличение концентрации дохода в руках небольшой части семей при приближении ее графика к кривой ОАВ, при уменьшении концентрации ее график располагается ближе к прямой ОВ. Концентрация определяется площадью области ОСВ, чем больше величина площади, тем сильнее концентрация.Площадь S можно найти по формуле средних прямоугольников. В качестве меры концентрации используется коэффициент Джини:

.

пример.

4.ДИАГРАММЫ.

Диаграмма ( от греческого diagramma - изображение, чертеж, рисунок) - это графическое изображение, наглядно показывающее соотношение между сравниваемыми величинами. Диаграммы бывают различных видов: полосовые (ленточные), столбиковые, квадратные, круговые, секторные, фигурные, радиальные, знак Варзара.

1. Полосовые - особенно наглядны при сравнении величин, связанных между собой в единое целое. Ширина полос должна быть одинаковой. По длине полосы разбиваются на части, пропорциональные изображаемым величинам.

пример 1.

Данные по классификации безработных в США (средние по месяцам)

Год ищут работу частично занятые нет работы
1989 6.5 4.9 0.9
1990 6.9 5.1 0.8
1991 8.4 6.0 1.1

2. Основным видом столбиковых диаграмм являются гистограммы.

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основанием которых служат частотные интервалы длины h, а высоты равны отношению Mi/h - плотность частоты. Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними на расстоянии Mi/h проводят отрезки параллельные основанию. Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основанием которых случат частичные интервалы длиной h, а высоты равны Wi/h.