Смекни!
smekni.com

Достижения генной инженерии и биотехнологии (стр. 5 из 11)

(т. е. в конечном счете в ДНК). В клетках бактерий (прокариот), которые не имеют ядра, транскрипция и трансляция происходят одновремен­но и сопряжены; мРНК связана с рибосомами, в которых осуществляется соединение аминокислот с образованием белков. Рибосомы играют ключевую роль в трансляции и в клетках животных.

Наряду с информацией о структуре белков (записанной с помощью генетического кода) молекула ДНК содержит ряд регуляторных сигналов, записанных в виде специфи­ческих нуклеотидных последовательностей. Эти сигналы служат точками начала транскрипции или трансляции, другие (в частности, между генами) указывают точки прекращения считывания генетической информации. Гене­тический код, по-видимому, универсален для всех живых организмов, иными словами, данная последовательность ДНК обязательно кодирует один и тот же белок в клетках разных организмов, тогда как регуляторные сигналы в клетках животных и в бактериальных клетках не одинако­вы. В клетках животных информация о структуре белка может кодироваться не одним непрерывным участком ДНК, а несколькими сегментами, разделенными участка­ми ДНК, носящими название нитронов. Информационная РНК, которая транскрибируется с ДНК, подвергается расщеплению, в ходе которого все интроны удаляются из ее последовательности, а остальные остающиеся фрагмен­ты, или экзоны, сшиваются вместе с образованием моле­кулы мРНК, которая обладает последовательностью, ко­дирующей последовательность аминокислот белка, а так­же содержит ругуляторные сигналы, необходимые для начала и прекращения процесса трансляции.

Для экспрессии в бактериальной клетке гена из клетки животного необходимо, чтобы в клетку была введена молекула ДНК с последовательностью нуклеотидов, коди­рующей белок, из которой интроны уже удалены; иными словами, нужна молекула ДНК, синтезированная на соот­ветствующей мРНК обратной транскриптазой. Более того, регуляторные сигналы должны быть похожи на таковые бактериальной клетки. Наконец, для получения нужного белка в достаточных количествах бывают необходимы дополнительные изменения бактериальной клетки.[2]

Методы введения ДНК в бактериальные клетки

Для введения ДНК (генов) в клетки бактерий исполь­зуются два метода. Первый основан на применении плазмиды в качестве вектора.

В начале 1950-х гг., вскоре после открытия Ледербергом процесса конъюгации Escherichia coli, было установ­лено, что типы «спаривания» клеток бактерий обусловле­ны генетически и что генетическая информация перено­сится из клеток мужского типа в клетки женского типа, или реципиентные клетки. Способность служить донорными клетками (или фактор плодовитости F) передавалась при конъюгации значительно чаще, чем любой другой генетический признак. F-фактор передавался также неза­висимо от любого другого известного гена донорной клетки. Ледерберг подметил, что F-фактор напоминает внехромосомные генетические элементы, имеющиеся в цитоплазме высших организмов. Это наблюдение позволи­ло ему в 1952 г. присвоить подобным внехромосомным генетическим системам общее название—плазмиды.

В 1953 г. Хэйс, который в то время работал в больнице Хаммерсмита в Лондоне, установил, что в определенных условиях F-фактор может оказаться сцепленным с генети­ческими маркерами и индуцировать последовательный их перенос в ходе конъюгации. F-фактор присоединяется к бактериальной хромосоме в специфическом участке (сайте); именно в этой точке хромосома разрывается при конъюгации и начинается ее перенос в реципиентную клетку. F-фактор способен также отделяться от хромосо­мы, захватывая подчас небольшие фрагменты хромосомы; поэтому его можно рассматривать как виехромосомный элемент, который иногда интегрирует в хромосому.

Жакоб и Вольман, сотрудники Института Пастера в Париже, отметили сходство в поведении F-фактора, уме­ренного бактериофага X, и другой плазмиды—Со1Е1 (которая кодирует колицин—белок, убивающий клетки Е. coli ). Для обозначения генетического элемента, который может реплицироваться либо в свободном состоянии, либо соединившись с бактериальной хромосомой, они предло­жили новый термин—«эписома».

В 1959 г. в Японии при исследовании больных бактери­альной дизентерией, которые не поддавались лечению обычно эффективными антибиотиками, было сделано за­мечательное открытие. В клетках патогенных бактерий (Shigella dysenteriae) были найдены гены, придававшие им устойчивость одновременно к нескольким антибиотикам; такая устойчивость передавалась другим кишечным бакте­риям во многом подобно тому, как передается F-фактор. Эти факторы устойчивости (называемые R-факторами) обладали сходством с F-фактором; так, они были способ­ны индуцировать передачу самих себя от клетки к клетке при конъюгации. Позже удалось показать, что некоторые из них содержат последовательности нуклеотидов, близ­кие к таковым F-фактора.

В начале 1960-х гг. Новик обнаружил подобные факто­ры устойчивости у стафилококков; они содержали ген, кодирующий фермент пенициллин-β-лактамазу, или пенициллиназу; последняя расщепляет пенициллин и таким образом обеспечивает устойчивость к этому антибиотику. R-факторы стафилококков, по-видимому, не способны обеспечивать передачу самих себя посредством конъюга­ции и переносятся лишь пассивно в процессе трансдукции, т. е. при их встраивании в ДНК бактериофага. Это открытие указывало на наличие нескольких R-факторов в клетках кишечных бактерий.

К середине 1960-х гг. стало очевидным, что большин­ство R-факторов кишечных бактерий и стафилококков (как и плазмида Со1Е1) отличаются от F-фактора и фага λ [И.С.1] тем, что остаются внехромосомными элементами; их обратимого встраивания в хромосому клетки не происхо­дит. В строгом смысле они не соответствовали определе­нию эписомы. В 1963 г. Новик предложил пользоваться предпочтительно термином «плазмида», как более общим, а не «эписома». В настоящее время термин «плазмида» является общепринятым.

Плазмиды найдены почти у всех видов бактерий. Штамм, содержащий плазмиду, способен давать начало вариантам, у которых плазмида утрачена; в подобных случаях плазмида теряется окончательно, клетка не спо­собна ее регенерировать и может только получить ее из другой бактериальной клетки.

Плазмиды представляют собой кольцевые молекулы ДНК, по размеру соответствующие 1—3% генома бакте­риальной клетки, однако даже столь малая часть наслед­ственного аппарата кодирует важные генетические призна­ки, которые обычно сама бактериальная хромосома не кодирует. Например, они содержат информацию, необхо­димую для конъюгации бактериальных клеток, ими обус­ловлен ряд заболеваний растений и животных. Они позво­ляют клеткам использовать многие сложные соединения в качестве источников питания и обеспечивают устойчи­вость к разнообразным токсичным агентам, особенно к антибиотикам. Плазмиды стафилококков несут гены устойчивости к пенициллину, соединениям ртути и ряду тяжелых металлов, вызывающих летальный эффект (со­лям сурьмы, висмута, кадмия и свинца, ионам арсената и арсенита). Гены устойчивости к тяжелым металлам обна­ружены также в составе R-плазмид Е. соli. Наличием плазмид обусловлены также некоторые заболевания с выраженной диарреей, стафилококковый импедиго, створаживание молока и превращение его в сыр молочно­кислыми бактериями, а также разнообразные биохимиче­ские реакции, характерные для бактерий рода Pseudomonas.. Плазмиды могут управлять синтезом инсектицида в клетках Bacillus thuringiensis [2]. Использование плазмид в качестве векторов для введения чужеродных генов в бактериальные клетки начиная с 1975 г. послужило толчком для интенсивных исследований их структуры и характера репликации.

Количество плазмид в клетке может колебаться от одной до более сотни; в целом чем крупнее плазмида, тем меньше количество ее копий в клетке. Обычно репликация плазмиды регулируется независимо от репликации хромо­сомы. Поскольку плазмиды могут различаться по количеству копий водной и той же клетке, количество копий ; должно определяться регуляторной системой, присущей самой плазмиде. Такая система была описана в 1972 г. датчанином Нордстрёмом из Университета Оденсе для плазмиды R1 Е. со1i; сходные регуляторные системы были найдены у плазмид стафилококков. Количество копий плазмиды R1 зависит, по-видимому, от белка или белков, которые подавляют ее репликацию. Сегмент ДНК длиной не более двух тысяч пар нуклеотидов управляет реплика­цией плазмиды, которая более чем в 50 раз его крупнее.

Долгое время считалось, что генетическая конституция всех клеток данного вида одинакова и не изменяется в течение длительного времени, однако, как оказалось, значительная часть генетических признаков, причем не только у бактерий, но и у высших организмов, нестабильна (эти признаки имеются в одних клетках или штаммах и отсутствуют в других,, клетки могут терять их и приобре­тать вновь) и мобильна (способна переноситься между клетками или перемещаться в одной и той же клетке из одного локуса в другой). Такая нестабильность объясняетcя тем, что эти признаки определяются плазмидами и тугими атипичными генетическими системами.

При конъюгации бактериальных клеток может проис­ходить обмен плазмидами между бактериями, принадлежащими к разным видам и даже родам, которые не способны обмениваться генами, находящимися в хромосомах. Наконец, такой обмен может приводить к переносу генов, находящихся в плазмиде, из одного вида в другой при совместном росте и конкуренции, в результате чего реципиентные клетки приобретают способность выживать за счет донорных клеток. Эти свойства показывают, что плазмиды способны к выживанию независимо от судьбы содержащих их клеток, они не только не снижают общей приспособленности клетки, но, напротив, снабжают ее дополнительными адаптивными функциями. В самом деле, плазмиды обладают способностью включать в себя новые гены, а уже содержащиеся в них гены «перетасовывают» так, что это, с одной стороны, не влияет на эффектив­ность репликации самих плазмид, а с другой—наделяет клетку резервуаром генетической информации, которую она использует по мере надобности.