Сначала выведем уравнения относительного движения ЛА для общего случая, к которым затем в зависимости от цели исследования будем добавлять уравнения других видов. Структура модели может быть определена аналитическим путем исходя из физических законов, определяющих поведение объектов. Естественно, что наиболее простой является модель группы, состоящей из двух ЛА. Ее мы и будем рассматривать.
В общем случае модель движения ЛА в группе включает в себя: модель движения каждого ЛА как материального тела, кинематические и динамические уравнения относительного движения ЛА, модель работы аппаратуры управления, составляющие в совокупности модель замкнутой динамической системы. В состав модели работы аппаратуры управления включают исполнительные органы и неизменяемые части измерителей, т.е. учитываются их динамические характеристики.
При математическом описании объекта управления и разработке модели его движения устанавливают:
динамические свойства объекта, т.е. реакцию объекта на действие всей совокупности входных сигналов управления и возмущений;
характер информации о параметрах движения объекта, которая может быть получена с помощью датчиковой аппаратуры;
ограничения и другие специфические требования, предъявляемые к движению объекта.
Для построения таких моделей, описывающих движение каждого ЛА отдельно, а также относительное движение рассматриваемых ЛА между собой, нужно найти число степеней свободы, однозначно определяющих движение, установить характер и законы изменения внешних воздействий, действующих на ЛА группы, после чего выбрать системы координат и составить дифференциальные уравнения движения.
Движение ЛА, как известно из [4], складывается из поступательного движения его центра масс, определяющего траекторию полета, и вращательного движения вокруг центра масс, определяющего угловое положение ЛА относительно инерциального пространства. При движении ЛА в атмосфере Земли эти две составляющие общего движения взаимосвязаны и должны рассматриваться совместно. Тогда движение отдельного ЛА будет иметь шесть степеней свободы (три поступательные и три вращательные).
В основу математической модели отдельного ЛА положена нелинейная система дифференциальных уравнений, описывающая движение ЛА в пространстве [4].
Как уже отмечалось, задача управления групповым движением связана с необходимостью изучения движения ЛА, находящихся в определенных взаимоотношениях. Поэтому на первый план выступает исследование их относительного движения, математическая модель которого и составляет объект управления.
Движение двух ЛА друг относительно друга представляет собой разность двух абсолютных движений и характеризуется тремя степенями свободы.
Рассмотрим вопрос о внешних возмущениях. Воздействие среды, в которой происходит движение, считаем неконтролируемым и предполагаем, что влияние ее на полет, предшествующий текущему моменту времени
, проявляется в реализующемся в этот момент векторе состояния.Рассматривая движение отдельного ЛА, надо заметить, что действие на объект внешних возмущений (например, ветровых) может привести к заметным искажениям траектории полета. Действие же внешних возмущений на относительное движение ЛА в группе заметного влияния не оказывает, так как для однотипных ЛА при малых рассогласованиях между ними возмущения почти одинаковы и при рассмотрении относительного движения как разности абсолютных движений взаимно исключаются.
Теперь непосредственно перейдем к рассмотрению математической модели относительного движения. Относительное движение ЛА будем рассматривать в общей постановке, когда оба аппарата могут совершать управляемый полет.
Введем некоторые определения. Вектором положения
называется вектор, проведенный из начала выбранной СК в точку мгновенного местоположения аппарата. Вектор и скорость его изменения записываются в проекциях на оси выбранной (декартовой или сферической) СК. В первом случае вектор положения определяется тремя его проекциями на оси декартовой СК, во втором двумя углами и расстоянием r от начала сферической СК до центра масс ЛА. Линией визирования будем называть прямую, соединяющую центры масс ведомого и ведущего ЛА. Вектором относительной дальности назовем вектор, который направлен от ведомого ЛА к ведущему вдоль линии визирования и по величине равен расстоянию между центрами масс этих ЛА. Это расстояние называется относительной дальностью . Скорость ведомого ЛА относительно ведущего называется относительной скоростью: . Плоскостью относительного движения двух ЛА будем называть плоскость, в которой лежат вектора относительной дальности и относительной скорости в данный момент времени. Углами пеленга в работе будем считать два угла (для конкретности назовем их углами места и азимута рисунок 1), которые определяют ориентацию линии визирования в связанных с ведомым ЛА декартовых СК, вращающихся с угловой скоростью относительно инерциального базиса.При рассмотрении относительного движения ЛА можно использовать различные СК. Каждая система имеет свои преимущества и недостатки. Выбор ее определяется конкретной задачей. Однако существуют и общие принципы выбора СК, которые обуславливают необходимость или желательность той или иной системы отсчета. Сюда относятся:
простота получаемых уравнений динамики, обеспечивающая простоту анализа задачи и интегрирования этих уравнений;
простота перехода от одной задачи к другой задаче исследуемого класса: математически ее можно выражать условиями, подобными приравниванию к нулю некоторых величин или функций;
простота технической реализации выбранной базовой СК на борту ЛА, определяющая простоту всей системы управления и в особенности ее измерительной части;
простота краевых условий.
Рисунок 1
С точки 150 которая связана с ведомым ЛА. Начало СК целесообразно совместить с центром масс ведомого ЛА. Причем эта система может быть ориентирована по отношению к связанным осям ЛА различным образом. Во многом это обусловлено тем, что на ведомом ЛА находится измерительная аппаратура, определяющая параметры относительного движения ведомого и ведущего ЛА. Поэтому логично выбрать те варианты ориентации осей и те типы относительных СК, которые используются в качестве базовой системы отсчета при измерении координат относительного движения.
Определенную таким образом СК будем применять для задач управления движением группы ЛА как на прямолинейных участках маршрута, так и на криволинейных. В задаче сбора ЛА в группу целесообразно рассматривать относительное движение в СК, связанной с ведущим ЛА. На этапе сбора ведущий аппарат является пассивным (неманеврирующим), поскольку к его СУ предъявляются требования обеспечения прямолинейного полета.
При выводе уравнений относительного движения двух ЛА в группе будем использовать хорошо известные положения теоретической механики [4]. Используя выше приведенные определения, можно утверждать, что положение аппаратов определяется в каждый момент времени векторами
и в земной СК. Следовательно, вектора дальности и относительной скорости запишутся:, | (1) |
. | (2) |
Векторное уравнение динамики относительного движения можно представить в виде
, | (3) |
где
, вектора ускорений ведущего и ведомого ЛА соответственно.Таким образом, относительное движение ЛА в пространстве представляется как движение двух материальных точек О1 и О2, совпадающих с центрами масс двух ЛА: ведущего и ведомого соответственно.
Далее будем описывать относительное движение ЛА в связанной СК ведомого ЛА ОXYZ, перемещающейся относительно инерциальной СК (рисунок 1). В этом случае переход от абсолютных производных векторов к локальным осуществляется по известным формулам: