Затем Ландсберг переходит непосредственно к доказательству существования групповая скорости, отличающейся от скорости любой составляюшей этого “волнового пакета”.
На стр. 429 он рассматривает случай сложения ДВУХ волн, при котором, как уже было указано выше, образует биения, не имеющие никакого отношения к передаче импульса (информации). Очевидно, что узлы этих биений НЕ ЯВЛЯЮТСЯ ИМПУЛЬСАМИ, и выделение неких точек на биениях и нахождение “скорости их перемещения” является совершенно не правомерным!
Для определения же истинного характера прохождения модулирующего сигнала в дисперсной среде необходимо рассмотреть случай модуляции монохроматической волны, например, синусоидальным сигналом.
В этом простейшем случае, когда модуляция осуществляется синусоидальным сигналом, мы имеем три волны:
где
, , - амплитуды, , , - коэффициенты преломления (дисперсной среды) ни частотах , , . Здесь надо помнить, что практичеси всегда Δω<<ω и глубина модуляции <100%, то есть .Можно, конечно, вспоминая курс средней школы, сложить три синуса, получив при этом аналитическое выражение для огибающей модулирующего сигнала. Намного же проще и наглядней сложить эти синусоиды графически (см. рис. 2).
Рис. 2
Здесь на первом графике представлен сигнал (синусоидальная несущая волна, модулированная синусоидальным сигналом малой частоты, то есть
) на выходе из передатчика (при Х = 0). На втором и третьем графиках представлено положение волн на расстояниях и от передатчика.Очевидно, что при х = 0 все три волны совпадают по фазе. Далее они начинают “расходиться”. Это значит, что первая боковая, для которой
начинает отставать по фазе от несущей, а вторая боковая, для которой – опережать.Фазовый сдвиг боковой относительно несущей может быть определен по формуле:
, где – угловая частота несущей, - угловая частота модуляции ( ), х – расстояние, пройденное сигналом (длина линии), с – скорость света в вакууме, - производная зависимости коэффициента преломления от частоты . При этом считалось, что . Таким образом, происходит “фазовое уширение сигнала” равное (при линейной зависимости ). При дальнейшем уширении импулса он полностью деформируется (распадается) и при фазовом сдвиге, равном 2π, форма сигнала (синусоидального) будет повторена. Если “выделить” центр импульса (чем не характерная точка!), то совершенно очевидно, что скорость распостранения сигнала будет равна ФАЗОВОЙ СКОРОСТИ НЕСУЩЕЙ ВОЛНЫ! Очевидно также, что ПОНЯТИЯ “ГРУППОВОЙ СКОРОСТИ” НЕ СУЩЕСТВУЕТ! Существует только “уширение сигнала”, которое и ограничивает скорость предачи данных и длину линии в дисперсной среде.Кроме того, совершенно очевидно, что КАЖДАЯ ИЗ СОСТАВЛЯЮЩИХ этого “волнового пакета” является монохроматической волной и НЕСЕТ СВОЮ ДОЛЮ ЭНЕРГИИ! А “понятие” “скорости распостранения энергии поля (?) этого импульса” (стр. 430 книги [1]) является странным и совершенно бессмысленным.
Возвращаясь к биению двух частот. Если сложить ДВЕ волны с близкими частотами и выделть (как сделал Рэлей с Ландсбергом) точку на биениях с максимальной амплитудой, то, очевидно, что эта точка будет слегка отставать (
) от первой волны (или опережать вторую). В случае же ТРЕХ волн точка с максимальной амплитудой, выделенная на биениях первой волны с несущей (центральной) будет опережать несущую, а точка на биениях второй волны с несущей будет на столько же отставать. При этом середина импульса и, соответственно, точка импульса с максимальной амплитудой будет распостраняться с ФАЗОВОЙ СКОРОСТЬ НЕСУШЕЙ ВОЛНЫ!Проблема распостранения сигнала в дисперсной среде имеет важное практическое значение. В частности, с ней вплотную сталкиваются специалисты, работающие с волоконно-оптическими линиями связи. В таких линиях при передаче аналогового сигнала его “уширение” проявляется как искажения сигнала и, на некотором расстоянии от источника сигнал становится нераспознаваемым. При цифровой же передаче данных (модуляция осуществляется прямоугольными импульсами) “уширение сигнала” в меньшей степени влияет на передачу информации. Влияние дисперсной среды на цифровую передачу данных проиллюстрировано на Рис. 3.
Рис. 3
Можно видеть, что сигнал читается и в случае “уширенного импульса” (средний график), так как а нем присутствуют уровни единица-нуль. Приемник же нормализует сигнал, превращая его опять в прямоугольный. И вобще, если кто-нибудь видел на осциллографе форму цифровых сигналов ЭВМ, тот знает, что эти сигналы – совсем не прямоугольные, а ближе к отрезку синусоиды. Таким образом, для предачи цифровой информации форма сигнала совершенно не обязательно должна поддерживаться прямоугольной. Очевидно также, что наличие “составляющих сколь угодно высоких частот с ничтожно малой амплитудой”, даже сильно опережающих или отстающих от несущей и полностью с ней рассинхронизированых будут проявляться как шумы и на сигнал не скажутся никак!
При дальнейшем удалении от источника, импульсы начинают перекрываться (нижний график) и, вот тогда уже сигнал не читается. Очевидно, что расстояние, на котором импульсы перестают читаться зависит от расстояния между импульсами, то есть от частоты модуляции.
Таким образом, для оптической линии важную роль играет произведение
. То есть, по одной и той же линии можно передать данные с высокой скоростью (в бит/сек, не путать со скоростью распостранения сигнала!) на короткое расстояние или с малой скоростью – на большие расстояния. Кроме того, дисперсия материала линии также влияет на параметры линии – при больших значениях сокращается допустимая длина линии или скорость передачи данных.Теперь оценим возможную длину дисперсной оптической линии по формуле
, задавшись ее параметрами и допустимым уширением сигнала.Предположим, что допустимое фазовое уширение сигнала (
) не должно превышать 0.1 рад (5,7 град). Зависимость дисперсии от длины волны возьмем из Рис. 28.3 стр. 542 книги [1] для области аномальной дисперсии раствора цианина. Тогда при длине волны 600 нм ( 1/сек). Предположим, что скорость передачи информации составляет 1000 бт/сек, то есть частота модулирующего сигнала будет порядка 1 КГц ( ). Подставляя эти значения в вышеприведенную формулу, получим допустимую длину оптической линии, которая получается равной 200 метрам. Здесь надо отметить, что зависимость n = f (ω) для захоложенных газов (сверхсветовые скорости получены, как раз, в таких средах) может быть существенно круче. Если, например, крутизна зависимости n = f (ω) будет на порядок выше, чем в приведенном примере, то допустимая длина линии пропорционально уменьшится до 20 метров.Таким образом, в среде с любой дисперсией можно передать информацию, но ее скорость и длина линии зависит от дисперсии.