Для организации нормативно-технического обеспечения и сопровождения данными критичных элементов на различных этапах восстановления необходимо создание и ведение баз данных о дефектах и их положениях, размерах, результатах испытаний и диагностики, проблемах восстановления, структурных схемах систем и деревьях отказов и т.д. Эти данные являются важными как для оценки вероятности проявления дефектов, так и для более тщательного их изучения. Ведение "информационного паспорта" исследуемых критичных элементов с данными о технико-экономических показателях и операциях, которые выполнялись с элементами на предыдущих периодах восстановления, позволяют реализовать наиболее рациональные пути и способы устранения дефектов.
На основе анализа информационного паспорта элемента для различных периодов восстановления можно говорить: о контроле над развитием дефекта, сравнивать обнаруженные дефекты с определенными эталонами для их ранжирования, проводить классификационный анализ, принимая к вниманию аспекты связанные с безотказностью и ресурсами для системы. Информационный паспорт элементов это также основа для выбора и построения принципов контроля с учетом технических характеристик и экономических показателей.
Отсутствие эксплуатационных данных и материалов диагностики и контроля не позволяет рационально организовывать эксплуатацию систем таким образом, чтобы расходовать технический ресурс как можно дольше, не снижая при этом уровень надежности в целом.
Проблема рационального использования технического ресурса для отдельных элементов и агрегатов системы ставит задачи исследования моделей и механизмов деградации элементов систем. Построение моделей для моделирования развития дефектов различного типа для различных типов элементов (кабели, трубы, двигатели и т.д.) с учетом различных внешних условий (окружающей среды) и возмущений является актуальной задачей.
Отметим также задачу выбора метода (инструментов) или комплекса методов неразрушающего контроля (НК) для проведения диагностики технического состояния как отдельных элементов, так и их совокупности с учетом технико-экономических показателей. Инженерная практика выдвигает ряд требований, которым должны удовлетворять методы, прежде всего, например, возможность визуализации дефектов, высокая выявляемоесть дефектов, чувствительность приборов, компактность и практичность оборудования. Для различных работ применяются как отдельные методы НК, так и их комбинации (комплекты). Однако их совместное сочетание (например, визуальный и вихретоковый) позволяют получить более достоверную информацию о качестве металлоизделий, например, в космосе [3].
В работах [8, 9, 10, 11] рассмотрены роль и место методов НК для обеспечения надежности и долговечности систем с высокой ценой отказа, а также рассматриваются модели и способы комплексирования различных по своей природе и затратам ресурсов методов НК.
Планирование восстановления критичных элементов
При решении задач восстановления актуальными являются модели и методы планирования восстановления элементов систем, которые учитывают возможности совмещения отдельных операций ТО, ремонта и технологических процессов, методы совершенствования расписаний обслуживания с учетом различных критериев и т.д. Для подготовки ТО критичных элементов необходимо также планировать обеспечение их различного рода ресурсами и разработать модели расходования ресурсов на основе теории управления запасами. Важными являются задачи планирования объемов и сроков проведения ТО, разработки оптимальных стратегий ремонтов по различным показателям готовности, стоимости и т.д. Основанием для назначения того или иного вида ремонта является выработка технологическим оборудованием технического ресурса, при котором создается угроза безопасности объекта.
При разработке таких моделей необходимо формировать показатели критериев и учесть ограничения на потребление различного рода ресурсов (численность специалистов, участвующих в проведении эксплуатационных процессов), оборудования, финансовых затрат, временных ограничений на восстановление.
Рассмотрим одну из задач принятия решений по выбору способов восстановления элементов систем.
Предположим, что для фиксированного периода времени Т в результате проведения исследования технического состояния выделенных критичных элементов и обработки результатов экспериментов по диагностике элементов (отдельных агрегатов или систем) с применением комплекса методов НК определены возможные способы восстановления элементов и заданы ограничения по технико-экономическим показателям на проведение работ.
Обозначим через Е={ej, j Є J), J={1,...,n}, (5)
- множество элементов (агрегатов), у которых на данный период восстановления Т необходимо проводить комплекс мероприятий, (ТО различного уровня), восстановление (профилактику, замену и т.д.). Объемы ремонтно-профи-лактмческих работ для каждого агрегата или системы зависят от экспертной информации о величине его остаточного ресурса, интенсивности отказов, результатов контроля систем, выделенных ресурсов и т.д.
Реализация восстановления работоспособности элемента еj может осуществляться различными технологическими способами
xjk ЄXj ={хj1, хj2,...,xjk* } (6)
Тогда х = (х1k1,...х1kj,...,хnkn) (7) - перечень способов восстановления всех критичных элементов системы.
При проведении работ могут задействоваться: различное число бригад, ремонтных органов, оборудование различного типа и т.д., для различных элементов необходимы финансовые и ресурсные затраты. От этих затрат зависит качество и сроки проведения работ (замена узла новым или замена (восстановление) его части и т.д.), что и определяет показатель вероятности не достижения предельного состояния после их восстановления.
- ЗАМЕНА - ЧАСТИЧНОЕ ВОССТАНОВЛЕНИЕ - РЕЗЕРВ |