Сначала о обратимости процессов в динамике Ньютона, динамике малого, счётного числа взаимодействующих частиц.
Рассмотрим один из наиболее ярких примеров обратимости процессов в динамике Ньютона – это обратимость движения математического маятника. При качании маятника в ту или иную сторону движения строго повторяются и при описании движения время можно принимать как со знаком плюс так и со знаком минус. Ни с точки зрения количества, ни с точки зрения качества оба описания не будут противоречить друг другу. Качание в одну сторону строго противоположно, обратимо качанию в другую сторону. Усложним ситуацию. Рассмотрим цепочку подвешенных на прямой линии достаточно близко друг к другу совершенно одинаковых математических маятников. Отклоним первый маятник, то есть за счёт совершения работы передадим ему потенциальную энергию, и отпустим. Взаимодействие будем описывать законами центрального абсолютно упругого удара. В системе начнётся процесс последовательного соударения и в цепочке возникнет процесс передачи импульса и энергии вдоль цепочки. При этом каждый акт взаимодействия между массами двух маятников сопровождается переходом кинетической энергии в потенциальную и наоборот и совершается работа против силы или силой. Этот процесс будет протекать до последнего маятника. После того как последний маятник отклонится и энергия системы сосредоточится в потенциальной энергии последнего маятника, весь процесс повторится, но в обратной последовательности, в обратном направлении. Мы растянули процесс во времени, но он остался обратимым. Однако если цепочку маятников предположить бесконечной длины, то процесс передачи импульса и энергии по цепочке станет необратимым. Таким образом теоретически необратимость процесса возможна и в классической динамике Ньютона, но это не локализованная в пространстве и во времени, гипотетическая необратимость, за счёт несчётного числа маятников.
Теперь о необратимости процессов в термодинамике, динамике большого, несчётного числа частиц, которая, как показывает практика, локализована и во времени и в пространстве.
Исторически сложилось так, что при рассмотрении процессов в неравновесных термодинамических системах в тени остаётся один из самых фундаментальных законов природы – закон сохранения результирующего импульса. В основу термодинамики был положен факт существования равновесного состояния в тепловых системах и неизбежности его наступления. Были сформулированы нулевой и второй постулаты, которые напрочь заслонили закон сохранения результирующего импульса как системный закон в применении к системам из несчётного числа частиц.
Во первых покажем что результирующий импульс всех частиц системы, находящейся в равновесии, равен нулю как вектор.
Обоснование данного утверждения легко провести с помощью выводов статистической физики. Известно, что в случае равновесного состояния в газе всегда реализуется Максвеловское распределение по скоростям. В статистической физике показывается, что для случая Максвеловского распределения по скоростям средняя проекция скорости хаотического движения на любое направление оказывается равной нулю. А если равна нулю проекция средней скорости, то равна нулю и проекция среднего импульса на любое направление. И результирующий импульс равен нулю как вектор.
На основе последовательного применения к термодинамическим системам (системам состоящим из несчётного числа частиц) закона сохранения результирующего импульса покажем единство динамики малого числа частиц (динамики Ньютона) и динамики несчётного числа частиц (термодинамики).
Наиболее характерным свойством замкнутой системы, с точки зрения динамики Ньютона, будет, наряду с сохранением полной энергии то, что результирующий импульс сохраняется постоянным по величине и направлению, сколько бы частицы не сталкивались между собой, какие бы события не развивались в системе. Однако положение коренным образом меняется при рассмотрении замкнутой системы из многих и многих миллиардов частиц. Наиболее характерным свойством этой системы является стремление к равновесию, при котором как было показано выше результирующий импульс всех молекул равен нулю как вектор, т.е. направленное движение переходит в хаотическое. Таким образом с одной стороны для замкнутой механической системы имеем
Рассмотрим многочастичную замкнутую равновесную механическую систему, которой одноактно передан некоторый импульс. Этот импульс будет для данной системы оставаться постоянным по величине и по направлению какие бы события не развивались в данной системе. Пусть события в системе после передачи импульса развиваются таким образом, что масса результирующего импульса постоянно растёт. При этом скорость результирующего импульса должна соответственно уменьшаться (см. (4)), и кинетическая энергия, связанная с результирующим импульсом уменьшается обратно пропорционально росту массы (см.(5) и (7)). И если масса результирующего импульса в (4) становится сколь угодно большой, то кинетическая энергия (5) становится сколь угодно малой. Кинетическая энергия, связанная с результирующим импульсом, исчезает.
Это видно и из таких простых математических преобразований:
Рассмотрим события и механизмы, приводящие к реализации выше сказанного. Что приводит к росту массы результирующего импульса и куда девается кинетическая энергия? Пусть имеем замкнутую систему, состоящую из одинаковых шаров. Причем n шаров покоятся, а один шар движется и сталкивается с покоящимися шарами. До столкновения результирующий импульс системы:
Шар 1 (см. Рис.1) сталкивается с покоящимися шарами, причем должны при этом выполняться закон сохранения результирующего импульса и закон сохранения кинетической энергии. Пишу закон сохранения кинетической, а не полной энергии, т.к. принято считать, что при абсолютно-упругом соударении шаров потенциальная энергия проявляется только в момент непосредственного соприкосновения. Эта схема принимается мною с тем, что бы в наибольшей простоте раскрыть механизм рассеяния кооперативной кинетической энергии. При рассмотрении последовательности столкновений будем следить не за траекториями отдельных частиц, которые экспоненциально разбегаются, а за поведением результирующего импульса.
Шар 1 с импульсом