Смекни!
smekni.com

Понятие времени и проблема континуума (к истории вопроса) (стр. 3 из 10)

Аристотелево определение непрерывности по существу совпадает с аксиомой Евдокса, получившей название также аксиомы Архимеда и сформулированной Евклидом в четвертом определении У книги «Начал»: «Говорят, что величины имеют отношение между собой, если они, взятые кратно, могут превзойти друг друга» [10, c. 142]. Вот как Аристотель формулирует евдоксов принцип отношений, показывая, что его альтернативой будет парадокс «Дихотомия»: «Если, взявши от конечной величины определенную часть, снова взять ее в той же пропорции, т.е. не ту же самую величину, которая взята от целого, то конечную величину нельзя пройти до конца; если же настолько увеличивать пропорцию, чтобы брать всегда одну и ту же величину, то пройти можно, так как конечную величину всегда можно исчерпать любой определенной величиной» [6, III, 206b]. Вероятно, теория отношений Евдокса была попыткой решить вопрос о возможности установления отношения также и несоизмеримых величин. Пока не была открыта несоизмеримость, отношения могли выражаться целыми числами, и для определения отношения двух величин нужно было меньшую взять столько раз, сколько необходимо для того, чтобы она сравнялась с большей. Но отношения несоизмеримых величин невозможно выразить в виде пропорции, члены которой будут целыми числами. Чтобы все же иметь возможность устанавливать отношения несоизмеримых величин, Евдокс предложил такой выход: если для двух величин a и b, где a>b, можно подобрать такое число n, чтобы меньшая величина, взятая n раз, превзошла большую, т.е. чтобы было справедливо неравенство nb>a, то величины a и b находятся между собой в некотором отношении. В противном же случае они не находятся ни в каком отношении, что действительно имеет место там, где приходится иметь дело с бесконечно малыми величинами, которые были известны грекам в виде, например, роговидных углов: последние не имеют отношения с прямолинейными углами, ибо роговидный угол всегда меньше любого прямолинейного угла. Как пишет И.Г. Башнакова, «роговидные углы по отношению к любому прямолинейному являются актуальными бесконечно малыми, или неархимедовыми величинами» [11, c. 311]. Именно эти величины, согласно Евдоксу, Архимеду и Аристотелю, не находятся ни в каком отношении с конечными.

Аристотель, как известно, не принимает понятия актуальной бесконечности, и его позиция совпадает с принципами античной математики. Он пользуется только понятием потенциально бесконечного, т.е. бесконечного делимого, которое, «будучи проходимым по природе, не имеет конца прохождения, или предела» [6, Ш, 6, 206b].

Сказать, что бесконечное существует только как потенциальное, а не как актуальное – значит сказать, что оно становится, возникает, а не есть нечто законченное, завершенное, не есть бытие. Пример потенциально бесконечного – это беспредельно возрастающий числовой ряд, ряд натуральных чисел, который, сколько бы мы его ни увеличивали, остается конечной величиной. Потенциально бесконечное всегда имеет дело с конечностью и есть беспредельное движение по конечному. Принцип непрерывности, как его задал Аристотель, базируется на понятии потенциально бесконечного.

Бесконечное, таким образом, есть, по Аристотелю, возможное, а не действительное, материя, а не форма: не случайно же материю Аристотель понимает как возможность. Не допуская актуальной бесконечности, Аристотель определяет бесконечное как то, вне чего еще всегда что-то есть. А может ли существовать нечто такое, вне чего больше ничего нет? И если да, то как его назвать? «Там, где вне ничего нет, – говорит Аристотель, – это законченное и целое: это то, у которого ничто не отсутствует, например, целое представляет собой человек или ящик... Целое и законченное или совершенно одно и тоже, или сродственны по природе: законченным не может быть ничто, не имеющее конца, конец же граница» [6, III, 6, 207b]. Бесконечное – это материя, т.е. в ее аристотелевском понимании нечто вполне неопределенное, не имеющее в себе своей связи и лишенное всякой структуры. Целое же – это материя оформленная, и «конец», «граница», структурирующая его и делающая чем-то актуально сущим, действительным – это форма. Именно потому, что началом актуально сущего является форма, а форма есть предел, начало цели (она же – «конец», граница), он отвергает возможность актуально бесконечного: такое понятие является, по Аристотелю, как, впрочем, и по Платону, самопротиворечивым.

Пересмотр аристотелевского принципа непрерывности и понятие бесконечно малого у Галилея и Кавальери

Несмотря на напряженные споры вокруг понятий бесконечного и непрерывного, средневековая физика и математика признавала как теорию отношений Евдокса, так и аристотелево понятие непрерывного. Философско-теоретическому пересмотру эти античные принципы были подвергнуты в эпоху Возрождения – Николаем Кузанским и Джордано Бруно. В рамках же собственно физики и математики они были поставлены под сомнение и в сущности отвергнуты Галилеем и его учеником Кавальери, стоявшими у истоков инфинитезимального исчисления5.

Проблема непрерывности обсуждается Галилеем в разных контекстах. Так, например, рассматривая вопрос о причинах сопротивления тел разрыву или деформации и считая причиной мельчайшие «пустоты» или «поры» в телах, Галилей сталкивается с таким аргументом: как объяснить большую силу сопротивления некоторых материалов, если при ничтожном размере «пустот» и сопротивление их должно быть ничтожным? Отвечая на этот вопрос, Галилей пишет: «Хотя эти пустоты имеют ничтожную величину и, следовательно, сопротивление каждой из них легко превозмогаемо, но неисчислимость их количества неисчислимо увеличивает сопротивляемость» [12, c. 131]. Понятие ничтожно-малых пустот характерно: ничтожно-малое, в сущности, не есть конечная величина, ибо в этом случае число пустот в любом теле было бы исчислимым. Что Галилей хорошо понимает заключающуюся здесь проблему и трудность, свидетельствует следующая беседа Сагредо и Сальвиати: «Если сопротивление не бесконечно велико, – говорит Сагредо, – то оно может быть преодолено множеством весьма малых сил, так что большое количество муравьев могло бы вытащить на землю судно, нагруженное зерном... Конечно, для того чтобы это было возможно, необходимо, чтобы и число их было велико: мне кажется, что так именно обстоит дело и с пустотами, держащими связанными частицы металла.

Сальвиати. Но если бы понадобилось, чтобы число их было бесконечным, то сочли бы вы это невозможным?

Сагредо. Нет, не счел бы, если бы масса металла была бесконечной, в противном случае...» [12, c. 131–132].

Мысль Сагредо ясна: в противном случае мы окажемся перед парадоксом Зенона: как бы малы ни были составляющие элементы, но если они имеют конечную величину, то бесконечное их число в сумме даст величину бесконечную – неважно, идет ли речь о массе металла, длине линии или величине скорости. На этом принципе стояла как античная математика, так и античная физика. Но именно этот принцип и хочет оспорить Галилей. Вот ответ Сальвиати на соображения Сагредо: «В противном случае – что же? Раз мы уже дошли до парадоксов, то попробуем, нельзя ли каким-либо образом доказать, что в некоторой конечной непрерывной величине может существовать бесконечное множество пустот» [12, c. 132]. Доказательство Галилея состоит в допущении тождества круга и многоугольника с бесконечным числом сторон, т.е. образований, с точки зрения античной математики, не могущих иметь между собой никакого отношения. Именно предельный переход от многоугольника к кругу путем допущения многоугольника с актуально бесконечным числом сторон составляет основание вводимого Галилеем метода инфинитеэимального исчисления. Использование актуально бесконечного в математике, по мнению Галилея, расширяет возможности последней. Именно Галилей пользуется понятием неделимого, на основе которого строит затем геометрию неделимых его ученик Кавальери6. Эти неделимые Галилей именует «неконечными частями линии», «неделимыми пустотами», «атомами». Природа их парадоксальна, противоречива: они не являются ни конечными величинами, ни «нулями». Из них-то, по Галилею, и состоит непрерывная величина.

Характерно, что в XVIII в., когда бурно обсуждалась природа этой самой «бесконечно малой», Вольтер со свойственным ему остроумием определил математический анализ как «искусство считать и точно измерять то, существование чего непостижимо для разума» (цит. по: [13, c. 176]).

Галилей, вводя понятие «бесконечного числа бесконечно малых», принимает таким образом в качестве предпосылки актуальную бесконечность, которой избегала античная математика, как и античная физика.

Вслед за Галилеем Кавальери, принимая те же предпосылки, предложил метод составления непрерывного из неделимых. При этом характерно название работы Кавальери: «Геометрия, изложенная новым способом при помощи неделимых непрерывного» (первое ее издание вышло в 1635 г.). Название полемично по отношению к принципу отношений Евдокса–Архимеда, как и к принципу непрерывности Аристотеля, который в ХШ в. кратко сформулировал Фома Аквинский: «Ничто непрерывное не может состоять из неделимых» (цит. по: [14, S. 191]). Каким образом непрерывное составлено из неделимых, Кавальери поясняет, в частности, в предложении ХХХV второй книги «Геометрии»: «Построенный на каком-либо прямоугольнике параллелепипед, высотой которого служит некоторая прямая линия, равен (сумме) параллелепипедов, имеющих основаниями тот же прямоугольник, а высотами какие угодно части, на которые может быть разделена высота. Если же представим себе, что прямоугольник, служащий основанием, разделен каким угодно образом на какое угодно число прямоугольников, то, указанный параллелепипед будет равен (сумме) параллелепипедов, имеющих высотами отдельные части высоты, а основанием – отдельные части основания» [15, c. 277]. Плоская фигура мыслится, таким образом, как совокупность всех линий, а тело – как сумма всех его плоскостей.