Смекни!
smekni.com

Фонон - квант биологической (клеточной) мембраны (стр. 2 из 4)

Надо отметить, что фононные спектры в биологии могут играть ту же роль, что и обычная, традиционная, фотонная спектроскопия в различных областях науки и техники при исследовании и идентификации разнообразных химических соединений. Активируя или инактивируя те или иные системы в биологических мембранах, мы будем менять и их функционирование, то есть, воздействовать на свойства клеток и их состояние. Самое простое, что можно сделать с клетками при этом – уничтожать выбранные клетки, не затрагивая других клеток в системе (например – раковые клетки).

Многие аспекты традиционной оптической спектроскопии справедливы и для предлагаемой “ультразвуковой”, фононной спектроскопии. Правда, надо учитывать, что фононы и фотоны отличаются не только одной буквой, но и относятся ещё и к разным типам квантовых частиц. Одни – Бозоны, другие – Фермионы и, следовательно, имеют некоторые различия в своём поведении.

В рамках фононной квантовой механики биомембран становятся понятными давно известные многочисленные факты, когда одинаковое ультразвуковое воздействие на разные клетки приводит к различным результатам, иногда противоречащим друг другу (26, 27). При традиционных исследованиях биологических объектов авторы не учитывали возможность “резонансного поглощения” ультразвука мембранными белками, которое может менять структурное и функциональное состояние последних, хотя и не отрицали, что поглощение ультразвука обусловлено белками и нуклеиновыми кислотами (28 – 30). Вероятно, с этим связаны прямо противоположные оценки влияния клеток на распространение ультразвука в структурированных и неструктурированных (лизированных или гомогонезированных) образцах тканей животных и человека (31 – 33).

Фонон – квант внутриклеточной информации

Одной из актуальных проблем современной клеточной биологии является изучение путей и способов распространение информации (обмен сигналами) внутри и между клетками. Важность этого вопроса очевидна – это и вопросы функционирования нейронов и всей нервной системы в целом и, соответственно, работы подконтрольных им иных клеточных систем организма, как в норме, так и при различных патологиях, где обнаружены изменения активности медиаторных систем и их рецепторов, а также связанные с этим нарушения мембран и ионных каналов нейронов. Интересно, что периферические органы и ткани обладают некоторой автономностью, т.е. способностью ограниченно функционировать в отсутствие нейрогуморальных регуляторных влияний. “Изолированные” таким образом органы работают на минимальном режиме их функциональных возможностей благодаря внутри- и межклеточным регуляторам (34).

Кроме того, в последние годы появились данные, что клетка, неадекватно реагирующая на “социальные сигналы”, поступающие от других клеток организма, может дать начало злокачественной опухоли (35).

Наиболее полно исследованы химические пути обмена межклеточной информацией при помощи нейомедиаторов и иных химических соединений. В настоящее время известно не менее 74 различных химических реакций, разделённых, как минимум, на 25 групп, в которых задействованы те или иные молекулы, принимающие участие в передаче межклеточной информации (36). Отмечено, что эти группы реакций можно рассматривать как “векторные реакции”. Т.е. это однонаправленные пути.

Гораздо меньше известно о процессах трансформации внемебранного – обычно химического, но не обязательно (в начале работы упомянуто о чувствительности биомембран к механическим воздействиям) – сигнала во внутримембранный сигнал. Под сигналом понимается любое внешнее воздействие, вызывающее изменения в клеточной мембране и/или уже внутри самой клетки, в её цитоплазме. Более подробно вопросы трансформации внешнего сигнала во внутримембранный и происходящие при этом процессы будут рассмотрены в отдельной работе (37). В данной работе рассмотрим только возможный механизм быстрого распространения сигнала, полученного клеткой в одном месте до его получателя (адресата), расположенного на другом, пространственно удалённом участке биомембраны. Самый известный процесс такого рода – распространение нервного импульса в нейронах.

Первой стадией таких трансформаций является связывание молекулы сигнала с соответствующей ей молекулой рецептором, расположенной на поверхности клетки. Для такого связывания сигнальная молекула и её рецептор должны специфично соответствовать друг другу (избитое, но, в общем, верное сравнение – подходить друг к другу, как ключ к замку). Всякая клетка имеет специфичный для нее набор рецепторов, и этот набор определяет круг химических сигналов, на который эта клетка реагирует. До этой стадии всё понятно; связывание сигнальной молекулы с её рецептором вызывает некие изменения в мембране – происходит трансформация внешнего химического сигнала во внутримембранный сигнал. Как конкретно происходит трансформация внешнего сигнала и во что он трансформируется в биомембране до сих пор не известно. Традиционные подходы не дают ответа. Для мембраны как квантовой системы не так важно, является химическая молекула сигнал ключом для мембранного рецептора или отмычкой. Для квантовой системы более существенно, что самопроизвольная реакция идет с выделением энергии, которая может быть излучена в виде мембранного фонона. Этот процесс схематично изображен на рисунке в работе, описывающей Модель, в разделе “Квазидинамика (Quasidynamics)” (17.4, 18.4). Естественно, что обратная реакция – отделение молекулы сигнала от молекулы мембранного рецептора – будет идти только с поглощением энергии, которой может быть энергия поглощённого комплексом рецептора с сигнальной молекулой мембранного фонона. Это можно представить в виде простых уравнений, принципиально описывающих процесс, без детализации:

Прямая реакция:

(внешний химический сигнал) + (мембранный рецептор) è

(комплекс рецептора с молекулой сигналом) +

(мембранный фонон = ħω);

Обратная реакция:

(комплекс рецептора с молекулой сигналом) +

(мембранный фонон = ħω) è

(мембранный рецептор) +

(химический сигнал, выделенный из мембраны).

Переименование прямой реакции в обратную и наоборот сути процесса не меняет. Более того, если вместо химического сигнала будем рассматривать любой другой сигнал, воздействующий на мембранный рецептор, то уравнения (и процессы, которые они описывают) не изменятся. Возможно только одно отличие в схемах: внешний сигнал вызывает активацию рецептора, его переход в возбужденное состояние с последующей релаксацией в исходную форму, которая и сопровождается излучением мембранного фонона. Естественно, что здесь может и не образовываться “относительно стабильный комплекс рецептора с внешним сигналом” и, следовательно, отсутствует обратная реакция – вся схема только упрощается.

Хорошо известно, что есть специализированные клетки, задача которых заключается в максимально быстрой и точной передачи сигналов от разных частей организма в мозг и обратно. Речь идет о нервных клетках (нейронах), связывающих мозг со всеми частями организма. Нейроны отличаются разнообразием, но всем им присуще наличие отростков. Короткими отростками (дендритами) нервные клетки контактируют друг с другом. Кроме коротких отростков нейрон обладает ещё и длинным отростком, называемым аксоном, по которому нервные импульсы идут от тела клетки к иннервируемым органам и другим нервным клеткам. Аксоны некоторых клеток тянутся на 50 – 70 см. Аксоны покрыты миелиновой оболочкой белого цвета. Миелиновая оболочка состоит из белков (миелина) и липида. Поверх миелиновой оболочки есть ещё швановская оболочка. Миелиновая оболочка, являясь изолятором, предотвращает рассеивание нервных импульсов и их переход на другие нервные волокна. Миелиновое покрытие по длине волокна имеет сегментарное строение; на границе двух сегментов имеются участки безмиелиновых перетяжек – так называемые узлы нервного волокна или перехваты Ранвье. За счет этого нервный импульс распространяется по волокну не непрерывно, а скачками: электрические импульсы “перепрыгивают” от одного перехвата Ранвье к другому. Скорость передачи нервного импульса по аксонам меняется от 150 м/сек для человека до 50 м/сек для лягушки (38 – 40).

Реально, как распространяется непосредственно сам нервный импульс на основании приведённых результатов говорить некорректно. В экспериментах измеряется так называемый “потенциал действия”, последовательно регистрируемый в разных перехватах Равнье после раздражения нейрона. Вот именно этот “потенциал действия”, и сопутствующие ему электрические процессы, распространяется по аксону скачками. Но то, что электрические явления сопровождают передачу сигнала нейроном, совсем не означает, что эти явления сами непосредственно и являются внутриклеточными информационными сигналами. (Очень это напоминает ёлочную гирлянду, там тоже внешне кажется, что разноцветные светлячки перепрыгивают из одного запаянного стеклянного шарика – лампочки, если кто не знает – в другой.) Здесь наблюдается предсказанный выше в данной статье квантовый процесс фононного обмена между различными мембранными белковыми системами в мембране аксона нервной клетки, когда воздействие в одном месте мембраны вызывает ответ в другом месте, причём воздействие и ответ могут иметь различную физико-химическую природу: общее между ними – квантово-механическое сопряжение через фононный обмен.

Нервная система, как и любая иная система, предназначенная для передачи информационных сигналов, должна удовлетворять ряду очевидных требований. Она должна быстро и без искажений передавать информационный сигнал. Желательно, чтобы система была универсальной, т.е. могла свободно передавать сигналы в противоположных направлениях и т.д. Кроме того, необходимо, чтобы в то время, когда сигналы не передаются – нервная клетка находится в покое – система потребляла минимум энергии, и самопроизвольно “автоматически” возвращалась в исходное работоспособное состояние после передачи сигналов. Ну и естественно, что система должна легко “обслуживаться”, что бы все необходимое для её нормального функционирования достаточно быстро и адресно попадало туда, где это всё необходимое требуется, создавая минимум помех процессу передачи полезного информационного сигнала. Проше всего это сделать, разделив процессы передачи информации и обслуживания в пространстве в пространстве.