Леонид Соломонович Файнзильберг, к.т.н.
Предложена стохастическая модель порождения циклических сигналов. Показано, что эта модель является обобщением моделей периодической и почти периодической функций. Предложен конструктивный метод оценки эталона по реализации циклического сигнала, наблюдаемого в фазовом пространстве координат.
Введение. Повторяющиеся во времени процессы часто протекают в технических и биологических системах. Такие процессы порождают специфические сигналы, которые в научной литературе принято называть циклическими [1] или квазипериодическими [2]. Типичными примерами циклических сигналов являются электрокардиограмма (ЭКГ), реограмма, магнитокардиограмма и многие другие физиологические сигналы, отражающие циклический характер работы системы кровообращения живого организма.
Известно, что существующие компьютерные системы анализа и интерпретации циклических сигналов, в частности, ЭКГ, все еще не обеспечивают требуемую достоверность результатов [3]. Согласно [4], это в первую очередь вызвано ошибками, которые возникают при измерении параметров (диагностических признаков) при обработке реальных сигналов во временной области. Один из альтернативных методов анализа таких сигналов, предложенный в [5] и получивший развитие в целом ряде других работ, в частности, в
[6-8], предполагает отображение и обработку сигнала в фазовом пространстве координат.
В настоящей статье предлагается модель порождения циклических сигналов и на основе этой модели исследуется новый метод восстановление эталона циклического сигнала по искаженной реализации, наблюдаемой в фазовом пространстве.
Постановка задачи. Пусть наблюдаемый сигнал
является результатом искажения периодического процесса случайным возмущением , где - некоторая функция. Назовем эталонным циклом - часть ненаблюдаемой функции на любом из ее периодов . Ставится задача оценить эталон по реализации , наблюдаемой на отрезке .Стохастическая модель порождения циклических сигналов. Прежде чем переходить к решению поставленной задачи, рассмотрим одну из возможных моделей порождения
по эталону . Будем считать, что эталон может быть представлен в виде функции, кусочно-заданной на интервале отдельными фрагментами (1)полагая, что число таких фрагментов
. Применительно к ЭКГ такие фрагменты соответствуют стадиям процесса возбуждения отдельных участков сердца - деполяризации предсердий (волне ), возбуждению (комплексу ) и реполяризации (волне ) желудочков [1].Представим наблюдаемый сигнал
в виде последовательности искаженных эталонов (1), предполагая, что на каждом -м цикле такой последовательности ( ) отдельные фрагменты эталона независимо один от другого линейно растягиваются (сжимаются) по времени, а сама функция линейно растягивается (сжимается) по амплитуде. Иными словами, предполагается, что процесс порождения -го фрагмента ( ) каждого -го цикла ( ) осуществляется на основе операторного преобразования , (2)где
- соответственно параметры линейного растяжения (сжатия) по амплитуде и времени, а - сдвиг по времени. Для обеспечения непрерывности порождаемого сигнала предполагается, что Последнее требование всегда можно обеспечить, выполнив предварительную нормировку эталона .Пусть в пределах каждого
-го цикла параметр принимает фиксированное значение , (3)где
- последовательность реализаций независимых случайных величин, которые с нулевым математическим ожиданием распределены на интервале , ограниченном фиксированным числом .Предположим также, что параметр
принимает фиксированное значение в процессе порождения каждого -го фрагмента -го цикла , (4)где
- последовательность реализаций независимых случайных величин, которые с нулевым математическим ожиданием распределены на интервалах , ограниченными фиксированными числами .При таких предположениях продолжительность
-го фрагмента -го цикла сигнала связана с продолжительностью соответствующего фрагмента эталона соотношением .Следовательно, общая продолжительность
-го цикла порождаемого сигнала определяется выражением ,началу
-го цикла соответствует момент времени ,а началу
-го фрагмента -го цикла – момент времени . (5)Применим к
-му фрагменту эталона операторное преобразование (2), положив параметр сдвига . Тогда из (2) с учетом соотношений (3)- (5) следует, что процесс порождения -го фрагмента на -м цикле можно представить в виде , (6)