Установив вид этих преобразований, Эйнштейн проверяет совместимость двух постулатов СТО следующим образом. Цитата из работы [1]:
“ Пусть в момент времени
Преобразуем это уравнение с помощью записанных выше формул преобразования; тогда получим
И так, рассматриваемая волна, наблюдаемая в движущейся системе, также является шаровой волной, распространяющейся со скоростью
Таким образом, на основании совпадения формы этих уравнений, сделан вывод, что преобразования Лоренца переводят сферическую поверхность в покоящейся системе отсчета в сферическую поверхность в движущейся системе отсчета. Тем самым было доказано соответствие преобразований (1) первому пункту исходных требований задачи о вспышке света и, является общепризнанным в физике. Однако, данное доказательство вызывает сомнение, исходя из рассуждений, которые приводятся ниже.
Если имеется сфера радиуса
то она может быть переведена в сферу движущейся системы отсчета только умножением радиуса заданной сферы на константу:
где
координаты этой же сферы относительно начала новой системы отсчета. Коэффициент пропорциональности
В свою очередь, преобразования Лоренца формально могут быть получены путем следующих тождественных преобразований:
Отсюда наглядно видно, что проводится изменения координат
Чтобы проверить справедливость сделанного утверждения построим поверхность вспышки света в движущейся системе координат с использованием преобразований Лоренца. Для этого зададим промежуток времени
Пусть
Подставим (13) в первое и четвертое равенство (1). Получим
Поделив, первое равенство (14) на второе, установим связь между углами в движущейся и покоящейся системах отсчета:
Выражение (16) является обратным к (15). Умножив левую и правую стороны второго равенства (14) на
где, для любого конкретного случая
На рис.1 представлены два графика в полярной системе координат. График-1, это координаты событий в покоящейся системе отсчета. График-2, это координаты этих же событий в движущейся системе отсчета даваемые преобразованиями Лоренца (формула (17)). Графики построены при следующих параметрах:
Анализ результатов
Из рис.1 видно, что координаты событий, даваемые формулой (17) ложатся не на сферу, а на поверхность эллипса. На основании этого можно заключить, что вывод Эйнштейна о сферичности получаемых результатов, для движущейся системы отсчета, сделан неверно. Преобразования (1) не удовлетворяют пункту 1 исходных требований поставленной задачи. Не смотря на то, что уравнения в цитате его работы совпадают по форме, они несут различное содержание. В первом уравнении цитаты координаты событий определяются только промежутком времени, который прошел с момента вспышки - это сфера. Переменные второго уравнения цитаты, т.е. координаты и промежуток времени, измеряемые наблюдателем движущейся системы отсчета, несамостоятельны. Они, посредством преобразований Лоренца, однозначно определяются переменными первого уравнения цитаты. Однако полученный эллипс не является нонсенсом для СТО. Более того, он находится в полном согласии с выводами СТО о сокращении стержней и не одновременности. Покажем это, выстроив логику покоящегося наблюдателя, проверяя тем самым пункт 2 исходных требований задачи.
Пусть с момента вспышки прошло