рис.6
рис.7
На рис.7 смоделирован ССП методом АРСС с параметрами p=2, q=1 и среднеквадратичной ошибкой 1,5822. Дальнейшее преобразование в прогноз временного ряда осуществляется сложением тренда и смоделированного ССП (рис.8).
рис.8
Дата | Прогноз |
14.12.2001 | 97,8013 |
17.12.2001 | 98,6445 |
18.12.2001 | 99,4309 |
19.12.2001 | 100,154 |
20.12.2001 | 100,809 |
21.12.2001 | 101,397 |
24.12.2001 | 101,921 |
25.12.2001 | 102,383 |
26.12.2001 | 102,791 |
Б.) Моделирование с помощью АРПСС производится на исходном ряде. Перво-наперво нужно определить порядки p, d и q. На практике это делается на основе разностей только первого или второго порядков. Термин «проинтегрированный» означает, какого порядка нужно взять разность, чтобы получить ССП. Тогда порядком разности и будет d. p и q определяются с помощью коррелограмм ЧАКФ (рис.10) и АКФ (рис.9) ССП, полученного разностями.
Порядок мы определили: d=1. Но порядки p и q трудно определить по нашим коррелограммам, и поэтому мы их определяем эмпирическим методом по наименьшей среднеквадратичной ошибке: p=1, q=2.
рис.9
рис.10
Теперь строим модель АРПСС.
На рис.11 построена модель АРПСС с параметрами p=1, d=1, q=2. Среднеквадратичная ошибка равна 1,6853. прогноз на 26.12.2001 равен 99,429.
рис.11
Дата | Прогноз |
14.12.2001 | 97,179 |
17.12.2001 | 97,539 |
18.12.2001 | 97,868 |
19.12.2001 | 98,17 |
20.12.2001 | 98,452 |
21.12.2001 | 98,715 |
24.12.2001 | 98,965 |
25.12.2001 | 99,202 |
26.12.2001 | 99,429 |
3.1.4.Установление адекватности модели.
Для определения адекватности модели строится спектрограмма ряда остатков после моделирования ССП. Модель считается адекватной, если спектр этого ряда является спектром «белого шума». Спектр «белого шума» представляет собой линию горизонтальную оси абсцисс.
Спектр ряда, оставшегося после моделирования АРСС (рис.12) далеко не похож на спектр «белого шума». Это говорит о том, что эта модель не является адекватной.
рис.12
рис.13
Спектральный анализ остатков после моделирования АРПСС (рис.13) также говорит о том, что построенная модель является неадекватной.
3.2.Адаптивные модели.
Строить прогноз с помощью адаптивных моделей мы будем моделью Хольта.
рис.14
Дата | Прогноз |
14.12.2001 | 97,063 |
17.12.2001 | 97,211 |
18.12.2001 | 97,36 |
19.12.2001 | 97,509 |
20.12.2001 | 97,657 |
21.12.2001 | 97,806 |
24.12.2001 | 97,954 |
25.12.2001 | 98,103 |
26.12.2001 | 98,251 |
На рис.14 построена адаптивная модель Хольта нашего исходного ряда. Параметры адаптации следующие: Альфа=0,998, Гамма=0. Среднеквадратичная ошибка равна 1,6469. Прогноз на 26.12.2001 составляет 98,251. По спектру ряда остатков (рис.15) видно, что эта модель является неадекватной.
рис.15
4.Вывод.
Мы рассмотрели три модели – АРСС, АРПСС, адаптивную модель Хольта. Все построенные модели являются неадекватными. Тем не менее мы должны выбрать наиболее подходящую, ту, которая дает наиболее правдоподобный прогноз.
Модель АРПСС содержит наибольшую из трех моделей среднеквадратичную ошибку. Да и график прогноза не очень хорошо вписывается в динамику всего предыдущего процесса.
Адаптивная модель Хольта содержит чуть меньшую среднеквадратичную ошибку, чем АРПСС, но график ее прогноза, во всяком случае, не лучше совпадает с общей динамикой, показывая менее крутой подъем индекса, чем на протяжении всего ряда.
Наиболее удачной я считаю модель АРСС. Она содержит, пусть не сильно отличающуюся, но наименьшую среднеквадратичную ошибку. Ее прогноз показывает рост индекса, причем он более или менее соблюдает динамику всего временного ряда, динамику роста.
Т.о. я останавливаюсь на прогнозе, сделанном с помощью модели АРСС (рис.16).
рис.16
p=2, q=1, MS(среднеквадратичное отклонение)=1,5822.
Дата | Прогноз |
14.12.2001 | 97,8013 |
17.12.2001 | 98,6445 |
18.12.2001 | 99,4309 |
19.12.2001 | 100,154 |
20.12.2001 | 100,809 |
21.12.2001 | 101,397 |
24.12.2001 | 101,921 |
25.12.2001 | 102,383 |
26.12.2001 | 102,791 |