: технологические возможности, социальные перспективы, этические проблемы
"Круглый стол" ученых
В беседе, состоявшейся в редакции "ОНС", приняли участие: Светлана Александровна Боринская - младший научный сотрудник Института общей генетики им. Н.И. Вавилова РАН, Леонид Иванович Корочкин - доктор биологических наук, член-корреспондент РАН, зав. лабораторией молекулярной биологии развития Института биологии развития им. Н. Кольцова РАН, Евгений Семенович Платонов -кандидат биологических наук, зам. директора Института общей генетики им. Н.И. Вавилова РАН, Александр Евгеньевич Седов - доктор биологических наук, ведущий научный сотрудник Института истории естествознания и техники им. С.И. Вавилова РАН, Николай Казимирович Янковский - доктор биологических наук, зав. лабораторией анализа генома Института общей генетики им. Н.И. Вавилова РАН.
Вел беседу зам. главного редактора "ОНС" Акоп Погосович Назаретян. Материал подготовила к публикации редактор отдела Л.Ф. Пирожкова.
А.П. Назаретян: Предметом широкого социального интереса стали ныне работы по генетической (в частности, генной) инженерии и генетике развития, лабораторные манипуляции с клетками и эмбрионами. Появились даже сообщения о клонировании первого человека. Вам, специалистам в этих областях, я хотел бы задать ряд вопросов.
1. Существуют ли, с точки зрения специалистов, какие-либо инструментальные, технологические пределы возможностей в этих направлениях?
2. Каких можно ожидать в этой связи социальных последствий и может ли в принципе цивилизация развиваться далее без таких технологий?
3. Видите ли вы здесь какие-то этические проблемы? Можно ли противостоять предполагаемым опасностям?
Е.С. Платонов: Не думаю, что могут существовать строго очерченные пределы технологическим возможностям в биологии. Как мы видим, эти возможности постоянно расширяются. Вот свежий пример. В феврале 1997 года шотландский исследователь Ян Вилмут сообщил сенсационный результат, к которому он и его соавторы шли долгое время. Им впервые удалось клонировать взрослый организм, используя в качестве донора клеточное ядро, происходящее из культивируемых клеток молочной железы взрослой овцы. Этот результат взбудоражил не только научный мир, но и общественность. Он породил очередной всплеск интереса к технологиям, которые развиваются сегодня в генетике, в том числе в генной инженерии, в генетике развития и др. Следует заметить, что первый всплеск интереса общественности к проблеме клонирования приходится на начало 1950-х годов: Р. Бриггс и Т. Кинг в то время впервые получили в опытах на амфибиях результаты, указывающие на возможность
клонирования организмов позвоночных из их отдельных клеток. В конце 1960-х годов Дж. Гёрдон удалял ядра из оплодотворенных яйцеклеток (икринок) лягушек и помещал в них ядра из клеток некоторых органов взрослых лягушек; в нескольких таких опытах удалось получить все стадии развития: зародыш, головастика, а затем и маленькую лягушку, причем того вида, ядро которого было пересажено в икринку. Затем неоднократно пытались экспериментально клонировать и млекопитающих. Но в 1981 году эти попытки прервались - безрезультатно и даже скандально. Автором сенсации был К. Илменси, опубликовавший в журнале "Cell" статью, из которой следовало, что ему удалось получить клонированных мышей, пересаживая в яйцеклетки ядра клеток раннего зародыша. Увы, его исследование в дальнейшем не было подтверждено, и даже появились сообщения, что полученные данные были фальсифицированы. Тем не менее эти работы привлекли внимание ученых в разных странах.
Подобные исследования велись и в нашей стране. Была разработана серия подходов для совершенствования технологии клонирования. Однако большинство исследователей сошлись во мнении, что в первую очередь нужно решать проблему потентности соматических клеток, т.е. способности генома клеток различных тканей зародышей или взрослого организма обеспечить развитие целого нового организма.
Н.К. Янковский: Хочу пояснить для неспециалистов. Речь идет о том, что в исходной клетке, из которой образовался организм (в том числе и мы с вами), содержится вся совокупность наследственной информации. И любая соматическая клетка, т.е. клетка нашего тела, тоже содержит наследственную информацию. Равноценна ли она той информации, которая содержалась в исходной клетке - оплодотворенной яйцеклетке? В принципе, да. Любая клетка тела содержит всю информацию о целом организме. Но эта информация заблокирована. Поэтому в обычных условиях ядро такой клетки не способно становиться программой развития целого организма. Как теряется и как сохраняется потентность клеток, когда она теряется и насколько сохраняется при развитии и дифференцировке клеток в отдельных органах? И обратима ли она - сохраняется ли в дифференцированной клетке способность к развитию из нее целого организма? Вот это и надо исследовать.
Е.С. Платонов: Этим и занялись большинство исследователей. А интерес собственно к клонированию резко упал. Одним из тех, кто продолжил заниматься клониро-ванием, был Ян Вилмут. В своих работах он использовал в качестве модельного объекта овцу и получил первый обнадеживающий результат: овцы оказались более подходящими для подобной работы, чем лабораторные мыши. Все, кто работал с мышами, зашли в тупик: потентность клеток у мыши исчезает на самых ранних этапах развития, на стадии двух клеток. У овцы же она сохраняется достаточно долго-до стадии 64-128 клеток. Тем не менее остается открытым вопрос: способны ли дифференцированные соматические клетки взрослого организма вновь "запустить" свой геном для воспроизведения целого нового организма? Большинство исследователей убеждены: нет, не способны. Доказательством тому служат результаты работ многих лабораторий.
Л.И. Корочкин: Вспоминается такой эпизод. В 1973 году мне довелось принимать участие в Международном генетическом конгрессе, который проходил в США, в прекрасном университетском городке Беркли. Российская (тогда советская) делегация немного запоздала. Мы прилетели ночью, поспать не удалось, позавтракали и пошли на конгресс. Нас встретили полицейские с автоматами, со всею строгостью проверявшие документы участников. Мы недоумевали - в чем дело? Оказалось, что студенты, прознавшие о намерении генетиков обсуждать проблему клонирования, пообещали расправиться с учеными. Вскоре поблизости собрался митинг, появились листовки, в которых генетиков клеймили позором и обвиняли в стремлении клонировать В. Ленина, А. Гитлера, И. Сталина, Мао Цзэдуна...
Пришлось организаторам конгресса выступать с разъяснениями по радио, телевидению, в газетах. Закончилось все благополучно: студенты пригласили участников на пикник, где были мирное застолье, интересные беседы и тосты за мир и дружбу, а также за процветание генетики!
Потом журналисты раздули сенсацию из опытов Илменси, которые впоследствии оказались некорректными. Должен сказать, что программа по разведению млекопитающих клонированием разрабатывалась еще в 70-е годы и в моей лаборатории, в Институте цитологии и генетики СО АН. Мне даже пришлось выступать с докладом на эту тему на одной из сессий ВАСХНИЛ в Москве в 1974 году. Мы сразу же пришли к выводу, что трансплантация чужого ядра бесперспективна и предпочтительнее слияние яйцеклетки и соматической клетки той особи, которую планируется клонировать. Наша работа развивалась довольно успешно, однако вскоре ее перестали финансировать, и она постепенно была прекращена.
Мне кажется, нынче вокруг этой проблемы опять поднимается много шума из ничего. Думать о каком-то практическом значении клонирования животных рано. Да и говорить о том, что будут получены абсолютно точные копии, преждевременно. Процесс индивидуального развития крайне сложен, каждый ген имеет определенные границы вариабельности (так называемую норму реакции). Известны ведь случаи своеобразного естественного "клонирования" - однояйцевые близнецы. При всем колоссальном сходстве они имеют и различия, в некоторых парах немалые и при этом независимые от воспитания.
Так что я, хотя никогда не был консерватором, не разделяю мнения тех специалистов, которые считают, будто все технические детали проработаны и в ближайшее время начнется поточное клонирование животных, а там, глядишь, и человека. Полагаю, все это временная "страсть". Шум поутихнет, работа, вероятно, будет продолжаться, но революционизирующих науку и технику результатов ожидать не следует. Тем более, что нынче наука стала весьма прагматичной: финансируются преимущественно те исследования, от которых ждут существенного выхода в практику. Как мне представляется, работы по клонированию, имеющие бесспорный теоретический интерес, для практической медицины или сельского хозяйства ничего существенного не дадут. Да и в выводах Вилмута коллеги сомневаются: возможно, он клонировал клетки эмбриона, плававшие в кровотоке вымени беременной овцы - донора ядер.
Н.К. Янковский: Вообще для многоклеточных организмов способность отдельной клетки образовывать целый новый организм весьма обычна. На растениях технология, базирующаяся на этом, применяется в массовом порядке. Это сейчас обычный биотсхнологический прием. Если, скажем, выведен какой-то новый сорт, то хлопотно размножать его семенами. Легче взять любой лист, а из него - необходимое количество клеток, и из каждой получить целый организм. Так получают нужные варианты в нужных количествах. А с животными так пока не получается, хотя технологии разрабатываются. У растений вообще вегетативное размножение - норма. Это у человека оно почти утрачено. Почти - потому, что случаи вегетативного размножения все же есть. Ведь при оплодотворении - как только мужская и женская половые клетки сливаются - образуется первая клетка нового организма, и она уже, строго говоря, - соматическая. Но иногда она делится, и получаются две клетки, каждая из которых дает начало новому организму. Так получаются близнецы. Формально говоря, это - вегетативное размножение. У некоторых животных такая форма размножения осуществляется постоянно. Например, у броненосца все детеныши из одного помета - это генетически идентичные близнецы: они происходят из нескольких клеток, которые образовались в результате последовательных делений первой клетки, получившейся при оплодотворении. Вегетативное размножение - это одна из стадий размножения.