Общие модели эволюции. Методы теоретической популяционной генетики. Теория нейтральности М.Кимуры
1. Классическая популяционная генетика
В этой лекции мы рассмотрим модели, характеризующие общие свойства эволюции. Начнем с синтетической теории эволюции. Эта теория была развита в начале 20-го века. Она основана на учении Ч.Дарвина о естественном отборе и на представлениях Г.Менделя о генах - дискретных элементах передачи наследственных признаков. Большую роль в становлении синтетической теории эволюции сыграла маленькая плодовая мушка Drosophila. Именно эксперименты на этой мушке позволили примирить кажущиеся противоречия между Дарвиновским представлением о постепенном накоплении полезных изменений и наследовании этих изменений и дискретным характером Менделевской генетики. Эксперименты на дрозофиле показали, что мутационные изменения могут быть очень небольшими.
Математические модели синтетической теории эволюции были разработаны Р. Фишером, Дж. Холдейном и С. Райтом. В основном эта математическая теория классической популяционной генетики была завершена к началу 30-х годов.
Согласно синтетической теории эволюции, основным механизмом прогрессивной эволюции является отбор организмов, которые получают выгодные мутации.
2. Математические методы популяционной генетики
Математические модели популяционной генетики количественно характеризуют динамику распределения частот генов в эволюционирующей популяции [1-4,6,8]. Есть два основных типа моделей: 1) детерминистические модели и 2) стохастические модели.
Детерминистические модели предполагают, что численность популяции бесконечно велика, в этом случае флуктуациями в распределении частот генов можно пренебречь, и динамику популяции можно описать в терминах средних частот генов.
Стохастические модели описывают вероятностные процессы в популяциях конечной численности.
Здесь мы кратко охарактеризуем основные уравнения и математические методы популяционной генетики. Наше изложение будет основываться на рассмотрении наиболее характерных примеров. Уравнения моделей мы будем приводить в основном в демонстрационных целях – без вывода, с пояснением смысла этих уравнений; тем не менее, мы будем приводить ссылки на литературу, в которой сделаны соответствующие математические выводы.
2.1. Детерминистические модели
Рассмотрим популяцию диплоидных1) организмов, которые могут иметь несколько аллелей2)A1 , A2 ,..., AK в некотором локусе3). Мы предполагаем, что приспособленности организмов определяются в основном рассматриваемым локусом. Обозначая число организмов и приспособленность генной пары AiAj через nijи Wij , соответственно, мы можем определить частоты генотипа и гена Pij и Pi , а также средние приспособленности генов Wi в соответствии с выражениями [1,2,4]:
Pij = nij /n , Pi = S j Pij, и Wi=Pi-1 S j Wij Pij , (1)
где n – численность популяции, индекс i относится к классу организмов {AiAj} , j = 1,2,..., K, которые содержат ген Ai . Популяция предполагается панмиктической4) : при скрещивании новые комбинации генов выбираются случайным образом из всей популяции.
Для панмиктической популяции приближенно справедлив принцип Харди-Вайнберга [1]:
Pij=Pi Pj , i, j = 1,..., K. (2)
Уравнение (2) означает, что во время скрещивания генотипы формируются пропорционально частотам генов.
Эволюционная динамика популяции в терминах частот генов Pi может быть описана следующими дифференциальными уравнениями [1,2,4]:
dPi /dt = Wi Pi - <W> Pi - S j uji Pi + S j uij Pj, i = 1,..., K, (3)
где t – время, <W> = S ij Wij Pij – средняя приспособленность в популяции; uij – параметры, характеризующие интенсивности мутационных переходов Aj --> Ai , uii=0 (i, j = 1,..., K). Первое слагаемое в правой части уравнения (3) характеризует отбор организмов в соответствии с их приспособленностями, второе слагаемое учитывает условие S i Pi = 1, третье и четвертое слагаемые описывают мутационные переходы.
Отметим, что подобные уравнения используются в модели квазивидов [5], см Лекция 2
Пренебрегая мутациями, мы можем анализировать динамику генов в популяции посредством уравнений:
dPi /dt = Wi Pi - <W> Pi , i = 1,..., K. (4)
Используя (1), (2), (4), можно получить (при условии, что величины Wij постоянны), что
скорость роста средней приспособленности пропорциональна дисперсии приспособленности V = S iPi(Wi- <W>)2 [1,3]:
d<W>/dt = 2 S iPi(Wi- <W>)2. (5)
Таким образом, средняя приспособленность – неубывающая величина. В соответствии с (4), (5), величина L = Wmax - <W> есть функция Ляпунова для рассматриваемой динамической системы (Wmax – локальный или глобальный максимум приспособленности, в окрестности которого рассматривается динамика популяции) [3]. Это означает, что величина L всегда уменьшается до тех пор, пока не будет достигнуто равновесное состояние (dPi /dt = 0).
Уравнение (5) характеризует фундаментальную теорему естественного отбора (Р.Фишер,1930), которая в нашем случае может быть сформулирована следующим образом [3]:
"В достаточно большой панмиктической популяции, наследование в которой определяется одним n-аллельным геном, а давление отбора, задаваемое Wij , постоянно, средняя приспособленность популяции возрастает, достигая стационарного значения в одном из состояний генетического равновесия. Скорость изменения средней приспособленности пропорциональна аддитивной генной дисперсии и обращается в нуль при достижении генетического равновесия."
Описанная модель – простой пример модели, использующей детерминистический подход. В рамках этого подхода был разработан широкий спектр аналогичных моделей, которые описывают различные особенности динамики генных распределений, например, учитывают несколько генных локусов, возраст особей, число мужских и женских особей, пространственную миграцию особей, подразделение популяции на субпопуляции и т.п. Многие из моделей и расчетов были предназначены для интерпретации конкретных генетических экспериментальных данных [1,3,4] .
2.2. Стохастические модели
Детерминистические модели позволяют эффективно описывать динамику распределения генов в эволюционирующих популяциях. Однако эти модели основаны на предположении бесконечного размера популяции, которое является слишком сильным для многих реальных случаев. Чтобы преодолеть это ограничение, были разработаны вероятностные методы теоретической популяционной генетики [1,3,4,6-8]. Эти методы включают анализ с помощью цепей Маркова (в частности, метод производящих функций) [4,7], и диффузионные [1,3,4,6,8] методы.
Ниже мы кратко рассмотрим основные уравнения и характерные примеры применения диффузионного метода. Этот метод достаточно нетривиален и его применение приводит к достаточно содержательным результатам.
2.2.1. Прямое и обратное уравнения Колмогорова
Рассмотрим популяцию диплоидных организмов с двумя аллелями A1 и A2 в некотором локусе. Численность популяции n предполагается конечной, но достаточно большой, так что частоты гена могут быть описаны непрерывными величинами. Мы также предполагаем, что численность популяции n постоянна.
Введем функциюj =j (X,t|P,0) , которая характеризует плотность вероятности того, что частота гена A1 равна X в момент времени t при условии, что начальная частота (в момент t = 0) была равна P. В предположении малого изменения частот генов за одно поколение, динамика популяции может быть описана приближенно следующими дифференциальными уравнениями в частных производных [1,3,4,8]:
¶ j/¶ t = - ¶ (MdX j)/¶ X + (1/2)¶ 2(VdX j)/¶ X 2 , (6)
¶ j/¶ t = Md P ¶ j/¶ P + (1/2)VdP ¶ 2j/¶ P 2 , (7)
где MdX , Md P и VdX , VdP – средние значения и дисперсии изменения частот X, P за одно поколение, соответственно; единица времени равна длительности одного поколения. Уравнение (6) есть прямое уравнение Колмогорова. (В физике это уравнение называют уравнением Фоккера-Планка), уравнение (7) – обратное уравнение Колмогорова.
Первые слагаемые справа в уравнениях (6), (7) описывают давление отбора, которое обусловлено разностью приспособленностей генов A1 и A2. Вторые слагаемые характеризуют случайный дрейф частот, который обусловлен флуктуациями в популяции конечной численности.
Используя уравнение (6), можно определять динамику частот генов во времени. Уравнение (7) позволяет оценивать вероятности фиксации генов.
Предполагая, что 1) приспособленности генов A1 и A2 равны 1 и 1 - s , соответственно и 2) вклады генов в приспособленности генных пар A1A1, A1A2 и A2A2 аддитивны, можно получить, что величины MdX , Md P и VdX , VdP определяются следующими выражениями [1,3,4,8]:
MdX = sX(1-X), MdP = sP(1-P), VdX = X(1-X)/(2n), VdP = P(1-P)/(2n) . (8)
2.2.2. Случай чисто нейтральной эволюции
Если эволюция чисто нейтральная (s = 0), то уравнение (6) принимает вид:
¶ j/¶ t = (1/4n)¶ 2[X(1-X)j]/¶ X 2 . (9)