Смекни!
smekni.com

Программируемая клеточная смерть (стр. 4 из 7)

Кроме рассмотренных компонентов, при нарушении наружной мембраны митохондрий из межмембранного объема выделяется термолабильный фактор, вызывающий необратимое превращение ксантиндегидрогеназы в ксантиноксидазу [80]. Фактор устойчив к ряду испытанных ингибиторов протеаз, включая каспазы, сериновые и металлопротеазы. Ксантиндегидрогеназа катализирует зависимое от NAD+ окисление ксантина до гипоксантина и последующее окисление гипоксантина до мочевой кислоты. Ксантиноксидаза катализирует те же реакции, но не с NAD+, а с О2 в качестве акцептора электронов. При этом образуются О2A, Н2О2, а из них – и другие активные формы кислорода (АФК), которые разрушают митохондрии и являются мощными индукторами апоптоза. Механизмы образования АФК, конечно, не ограничиваются ксантиноксидазной реакцией. Главным источником АФК в клетках являются митохондрии. Резкое увеличение АФК происходит при возрастании мембранного потенциала в митохондриях, когда снижено потребление ATP и скорость дыхания лимитируетсяADP [81]. Доля электронного потока через дыхательную цепь митохондрий, идущая на образование О2A, достигает 1-5 % (см. [61]). Цитоплазматическая мембрана макрофагов и нейтрофилов, как уже отмечалось, содержит О2A – генерирующую NADPH-оксидазу.

В зависимости от пути, по которому осуществляется активация каспаз, различают разные типы клеток [82]. Клетки типа I (в частности, линия лимфобластоидных В-клеток SKW и T-клетки линии Н9) подвергаются ПКС по пути, зависимому от апоптозных рецепторов плазматической мембраны без участия митохондриальных белков. Клетки типа II (например, линии Т-клеток Jurkat и СЕМ) погибают по пути апоптоза, зависимому от митохондриального цитохрома с [82]. ПКС, вызванная химиотерапевтическими соединениями, УФ- или і-облучением, по-видимому, напрямую связана с апоптозной функцией митохондрий: клетки, лишенные генов белка APAF-1 или каспазы-9, устойчивы к химио- и радиационной обработке, но погибают при индукции Fas-рецептора [83–86].

Некоторые клетки, например, клетки эмбриональной нервной системы, включают механизмы апоптоза, если они испытывают дефицит апоптозподавляющих сигналов (называемых также факторами выживания) от других клеток. Физиологический смысл процесса – в элиминации избыточных нервных клеток, конкурирующих за ограниченный фонд факторов выживания. Эпителиальные клетки при отделении от внеклеточного матрикса, вырабатывающего факторы выживания, тоже обречены на ПКС. Факторы выживания связываются соответствующими цитоплазматическими рецепторами, активируя синтез подавляющих апоптоз агентов и блокируя стимуляторы апоптоза [44]. Некоторые вещества (например, стероидные гормоны) оказывают дифференцированный эффект на различные типы клеток – предотвращают апоптоз одних типов клеток и индуцируют его у других [2].

Так, при наличии во внеклеточном матриксе факторов роста PDGF (platelet-derived growth factor – тромбоцитарный фактор роста) или NGF (nerve growth factor – фактор роста нервов) и цитокина интерлейкина-3 (IL-3) проапоптозный белок Bad не активен (см. обзор [58]). Факторы роста, связавшись со своим рецептором на плазматической мембране, вызывают активацию цитозольной протеинкиназы В, обозначаемой Akt/PKB/RAC и катализирующей фосфорилирование Bad по Ser-136. IL-3 тоже связывается со своим рецептором на плазматической мембране и активирует митохондриальную cAMP-зависимую протеинкиназу А (РКА), катализирующую фосфорилирование Bad по Ser-112. Будучи фосфорилированным по обоим остаткам серина, Bad образует комплекс с белком 14-3-3, располагающийся в цитоплазме. Дефицит факторов роста и IL-3 воспринимается клеткой как сигнал к апоптозу: происходит дефосфорилирование Bad, его внедрение в наружную мембрану митохондрий, выход цитохрома с из митохондрий и последующая активация каспазы-9 через APAF-1-зависимый механизм. Кроме этого дефицит IL-3 вызывает перемещение мономерного проапоптозного белка Bax из цитоплазмы в наружную мембрану митохондрий, последующая сшивка молекул Bax с образованием гомодимеров тоже ведет к выходуцитохрома с из митохондрий и гибели клетки.

3. В ряде случаев ПКС реализуется в результате комбинированного действия двух путей – с участием и рецепторов плазматической мембраны, и митохондриального цитохрома с. Так, повреждение ДНК ведет к накоплению в клетке белкового продукта гена р53, который может останавливать деление клеток и/или индуцировать апоптоз (см. обзоры [87–89]). У более чем 50% изученных видов опухолевых клеток ген р53 инактивирован [44], у них нарушена р53-зависимая регуляция клеточного гомеостаза.

Белок р53 является фактором транскрипции, регулирующим активность ряда генов. Предполагается, что ответная реакция на образование белка р53 зависит от степени нарушения клеточного генома [89]. При умеренном нарушении генома происходит остановка клеточного деления, осуществляется репарация ДНК, и клетка продолжает свое существование. При чрезмерном нарушении генома, когда ДНК уже не поддается репарации, включаются рецепторный и цитохром с-зависимый апоптозные каскады активации каспаз.

Различные пути апоптоза могут взаимодействовать между собой. В некоторых случаях зависимый от рецепторов путь ведет к малоэффективной активации прокаспазы-8. В этом случае подключается зависимый от митохондрий путь апоптоза: каспаза-8 (образовавшаяся в небольших количествах) взаимодействует в цитоплазме с белком Bid из семейства Bax, расщепляя его надвое. С-Концевой домен Bid далее внедряется в митохондриальную мембрану, индуцируя выход цитохрома с из митохондрий и его связывание с APAF-1 [43, 58].

4. Существует путь передачи сигнала ПКС с участием эндоплазматического ретикулума (ЭР) [90, 91]. В ЭР локализована прокаспаза-12. Нарушение внутриклеточного Ca2+-гомеостаза добавкой тапсигаргина или Ca2+-ионофорного антибиотика А23187 ведет к апоптозу клеток, вызванному превращением прокаспазы-12 в каспазу-12. ЭР-зависимый апоптоз связан с болезнью Альцгеймера: кортикальные нейроны мышей, дефицитных по каспазе-12, устойчивы к апоптозу, индуцированному І-амилоидным белком, но не к апоптозу с участием рецепторов плазматической мембраны или митохондриального цитохрома с.

5. Цитотоксические лимфоциты, Т-киллеры, могут вызывать апоптоз у инфицированных клеток с помощью белка перфорина. Полимеризуясь, перфорин образует в цитоплазматической мембране клетки-мишени трансмембранные каналы, по которым внутрь клетки поступают TNFb , гранзимы (фрагментины) – смесь сериновых протеаз. Существенным компонентом этой смеси является гранзим В – протеолитический фермент, превращающий прокаспазу-3 в активную каспазу-3 [2, 43].

6. Взаимодействие клеток с внеклеточным матриксом осуществляется с помощью интегринов. Интегрины – большое семейство гетеродимерных мембранных белков, которые участвуют в адгезии клеток, связывая внутриклеточный цитоскелет с лигандами внеклеточного матрикса. Нарушение адгезии клеток индуцирует апоптоз. Большинство интегринов специфическивзаимодействует с трипептидным RGD (аргинин-глицин-аспартат)-мотивом, входящим в состав белков внеклеточного матрикса. Растворимые низкомолекулярные RGD-содержащие пептиды являются эффективными индукторами апоптоза: проникая в клетки, они активируют латентную каспазу-3 [92, 93]. Ряд каспаз, включая каспазу-3, содержит RGD-последовательность вблизи активного центра фермента. В молекуле прокаспазы эта последовательность, вероятно, вовлечена во внутримолекулярное взаимодействие, придающее молекуле профермента такую конформацию, при которой протеазная активность не может проявиться. Предположительно RGD-последовательность взаимодействует с последовательностью DDM (аспартат-аспартат-метионин), локализованной вблизи участка протеолитической активации прокаспазы-3. Низкомолекулярный RGD-пептид, проникая в клетку и вступая в конкурентные взаимоотношения с RGD-последовательностью прокаспазы-3, вытесняет ее из сферы взаимодействия с DDM-последовательностью молекул профермента и индуцирует изменение их конформации, олигомеризацию и аутопроцессинг прокаспазы-3 с образованием активной каспазы-3 [92].

7. Особую форму апоптоза претерпевают эритроциты млекопитающих. Биогенез эритроцитов из плюрипотентной стволовой клетки в костном мозге включает ряд промежуточных этапов. На этапе эритробласта ядро изгоняется (выталкивается) из клетки и пожирается макрофагом [94, 95]. Альтернативный вариант: кариорексис (деструкция ядра) с образованием телец Жолли и их последующий распад и лизис внутри клетки [94]. Безъядерная клетка, называемая ретикулоцитом, в дальнейшем теряет митохондрии и рибосомы и превращается в эритроцит. Потерю ядра эритробластом можно рассматривать как особую форму ядерного апоптоза. Выяснение его механизма позволило бы применить его для обезвреживания опухолевых клеток. Эритроцит человека функционирует около 4 месяцев, а затем, поизносившись, исчезает в недрах ретикулоэндотелиальной системы, не причиняя неудобств окружающим клеткам. Лишенный ядра и митохондрий эритроцит, исполнив свое назначение, по-видимому, включает программу гибели, чтобы после этого поступить в распоряжение макрофагов печени и селезенки. Однако ингибитор протеинкиназы стауроспорин и ингибитор синтеза белка циклогексимид (индуцирующий ПКС у большинства испытанных типов клеток млекопитающих) не вызывает ПКС у безъядерных эритроцитов человека [96]. Стауроспорин и циклогексимид, а также отсутствие сыворотки в среде инкубации индуцируют гибель эритроцитов цыпленка (содержащих транскрипционно неактивное клеточное ядро) с выраженными признаками апоптоза по пути, который реализуется без участия каспаз. Сперматозоиды мыши, у которых ядра тоже не обладают активностью в транскрипции ДНК, при инкубации в искусственных средах спонтанно погибают за 1–2 суток; стауроспорин, циклогексимид и пептидный ингибтор каспаз z-VAD.fmk не ускоряют и не замедляют клеточную гибель [97].