В общем, сильное действие климатического пресса на изменчивость земной биоты очевидно.
Каковы же причины крупных климатических перемен на нашей планете? Они так давно обсуждаются в науке, что, кажется, высказано все, что смогло предоставить на заданную тему человеческое воображение. Как водится, фигурируют и космические силы...
Это уже становится каким-то стандартом мышления — сталкиваясь с особо сложной проблемой, растерянно озирать заоблачные дали: не там ли ответ? Как будто наша планета начисто лишена динамичных сил, способных приводить в действие многоступенчатые процессы. Я уже говорил, что некоторые «космические» догадки, в общем-то, напоминают попытку отложить решение вполне земных проблем на потом. Хотя, конечно, Земля — часть Вселенной, и космос не может не воздействовать на нее. Вопрос, по-видимому, в степени воздействия.
Солнце для нашей планеты — главный излучатель энергии. Как без него представить себе формирование климата! Но сильные колебания этого климата... Оно ли за них в ответе?
Миллиарды лет назад наше светило действительно посылало на Землю гораздо меньше тепла и света, чем сейчас. Однако уже к началу палеозоя (570 млн. лет назад) особой разницы практически не существовало. Считается, что светимость Солнца весьма устойчива и растет очень медленно — около 1 процента за 100 млн. лет.
А пульсации? Хорошо известно, что активность Солнца (появление на его поверхности пятен, вспышек, протуберанцев с последующим коротким усилением радиации) растет и ослабевает Каждые 11 лет. Вдвое большийцикл — 22 года — чередование магнитной полярности пятен (смена знаков магнитных полюсов). Некоторые данные позволяют говорить о 90-летних циклах. Сравнительно недавно академик Андрей Борисович Северный с сотрудниками Крымской астрофизической обсерватории АН СССР открыл Пульсации Солнца с периодом 160 мин. Затем бирмингемская группа английских ученых обнаружила 5-минутные колебания.
На какую из этих пульсаций можно возложить ответственность смены климатов с неравными промежутками в Долгие миллионы лет?
Когда детально исследовали древние отложения в озерах Австралии, то установили, что периодические чередования плотности отложений с 11-, 22- и 90-летней цикличностью неизменны в течение всех последних 660 млн. лет.
— Никаких существенных изменений в солнечных циклах примерно за последний миллиард лет не произошло,— считает академик Северный.
Но может, дело в переменчивости положения поверхности Земли по отношению к потоку солнечных лучей?
О вероятности некоторого непостоянства земной орбиты астрономы заговорили еще в прошлом веке. Позже югослав М. Миланкбвич вроде бы даже нашел этому математическое обоснование: цикличность в десятки тысяч лет. Орбита Земли то вытягивается, то приближается к круговой, и наша планета временами оказывается то дальше от Солнца, чем обычно, то ближе. Это вычисленное для последнего миллиона лет «дальше» действительно совпало с недавними короткими ледниковыми эпохами, а «ближе» — с межледниковьем. Подобные вещи всегда впечатляют. Но восторги оказались преждевременны. Главное возражение: такие же непостоянства орбиты должны бы происходить и в более ранние эпохи, признаков же покровных оледенений в течение почти 200 млн. лет в мезозое и начале кайнозоя не обнаружено.
Как видите, космические силы далеко не всевластны
на нашей Планете.
А что же в семействе «земных» гипотез? Не обошли ли они своим вниманием изменчивость планетарный
климатов? Разумеется, нет. Слово их авторам.
«Главное — концентрация водяного пара в атмосфере. Она выше — парниковый эффект сильнее, и наоборот. Отсюда сильные похолодания и потепления».
«Ничего похожего. К Земле, изолированной от Солнца облаками, приходит меньше энергии. Вот тут и наступает похолодание. С ним уменьшается испарение. А становится меньше облаков, лучше греет Солнце. Но приходит тепло, начинается активное испарение, появляется больше облаков. Опять похолодание»...
Кто тут ближе к истине — предмет дискуссий.
Вот еще одна гипотеза, очень популярная среди современных ученых. В ней главное — непостоянство содержания углекислого газа в атмосфере. С ним тоже, как вы помните, может быть связан парниковый эффект.
Ленинградский ученый, член-корреспондент АН СССР М. И. Будыко в конце 70-х гг. сделал интересные расчеты. Он произвел как бы оценку масс известняков и углеводородов, отложившихся в земной коре в разные геологические периоды. И отсюда вывел, как менялось, начиная с кембрийских времен, содержание углекислого газа в атмосфере.
Менялось, оказывается, сильно. Сегодня его концентрация упала до трех сотых процента. А 600 млн. лет назад была раз в десять больше. Уже в ордовике и силуре, то есть спустя 100 млн. лет, она начала уменьшаться. Но в девоне (еще через столько же) снова взвилась вверх — достигла почти половины процента. Правда, с той поры стала неуклонно снижаться. Неравномерно, с временными подскоками, но снижаться.
Все это выглядит особенно красноречиво в сопоставлении с рядом других расчетов. Первые касаются степени зависимости парникового эффекта от состояния атмосферы. Если бы в ней сегодня углекислого газа уменьшилось вдвое, это снизило бы среднюю температуру на Земле на 3—5°С. А если бы углекислоты вдвое возросло, то потеплело бы градуса на 2—4 (для полярных областей даже больше — на 5—9°С). Каков же должен был быть эффект во времена пиковых подскоков — в 10 раз и более!
Правда, тут надо учесть, что при большом повышении температуры происходит то, о чем говорится в предыдущей гипотезе,— усиливается испарение океана, Землю все плотнее окружает многослойная облачность, поверхность планеты недополучает солнечной энергии и потепление сокращается. Но это уже, так сказать, нюансы. Главное в прямой зависимости: больше углекислого газа в атмосфере — на Зеэдле теплее.
Справедливость зависимости была как будто бы Подтверждена и тогда, когда научились о приемлемой точностью (до полуградуса) определять палеотемпературы.
Тогда, похоже, изобрели «геологический градусник».
Его действие основано на соотношении изотопов кислорода—16 и 18. Дело в том, что в водяных парах концентрируется больше легкого изотопа 16. Чем холоднее воздух, тем труднее в нем удерживаться кислороду.
18, он возвращается обратно в океан. И наоборот, чем теплее на Земле, тем меньше в морской воде этого тяжелого изотопа. Однако где же раздобыть сегодня пробу той бирюзовой волны, что весело окатывала берега, скажем, меловых или горских континентов?
Задача не так безнадежна, как может показаться.
Тут есть одна хитрость. Коль скоро в морской воде существует определенное соотношение изотопов кислорода, то оно будет сохраняться во всех веществах, содержащих этот элемент и присутствующих в океане. Во всех, в том числе и в углекислом кальции, из которого многие жители подводного царства строят свои раковины.
Находить древнейшие, хорошо сохранившиеся раковины тоже непросто. Но это уже реальное занятие.
А дальше — вопрос совершенства техники химического
анализа. От нее — точность определений соотношения
изотопов кислорода в раковине. А значит, и достоверность палеотемпературы тех океанских вод, в которых; некогда пребывал давно исчезнувший хозяин подводного домика.
Таким «градусником» и удалось измерить средние палеотемпературы на поверхности Земли вплоть до кембрия. На графике это выглядит как волнистая кривая с буграми и ямами.
Так вот, ход кривой во многом совпадает с колебаниями концентрации углекислого газа в атмосфере в течение тех же сотен миллионов лет. Похожие подъемы и провалы. В девоне (400 млн. лет назад), когда средняя температура земной поверхности" поднималась до
очень высокой отметки — до 28°С, содержание углекисло
ты в воздухе составляло 0,45 процента — в 15 раз больше, чем сейчас (современная средняя температура земной поверхности 14°С). В юрском и начале меловогопериода (200—100 млн, лет назад) уровень углекислоты достигал 0,25 процента, и климат был соответственно теплым: 22—27°С.
Но есть и серьезные несовпадения кривых. Конец ордовика (450 млн. лет назад) и силур отмечены оледенением, температура тогда упала ниже современной, а концентрация углекислоты была существенно выше. Еще раньше, в позднем кембрии, наоборот, при относительно пониженном ее уровне климат был очень теплом.
Эти противоречия не позволяют ряду ученцх согласиться с тем, что основной виновник сильных колебаний земных климатов найден. Они за признание другой гипотезы. В той главное — смена наступлении океана на сушу и отступлений (трансгрессий и регрессий).
Когда затопляются большие пространства материков, поверхность Земли уже иначе, чем прежде, отражает солнечную энергию, и это якобы все решает. Вода действительно поглощает существенно большую долю солнечного излучения, нежели суша, в некоторых случаях раз в десять (по сравнению с пустынями). Поэтому во время трансгрессий, когда очень сильно увеличивается пространство, захваченное морями и океанами, отражается гораздо меньше солнечной радиации. И потому на Земле должно наступить потепление. Климат будет более влажным. Ну а во время регрессии, наоборот, увеличивается площадь суши, и всему механизму отражения — поглощения полагается работать в противоположном направлении и приводить в конечном счете к похолоданию, к большей сухости атмосферы.
Такова гипотеза: смена трансгрессий и регрессий— двигатель долговременных климатических колебаний на нашей планете.
Подтверждается ли она? Отчасти да. Скажем, начало величайшего наступления океана в кембрии -(570 млн. лет назад) действительно совпадает с потеплением. То же происходит и в начале мелового времени (135 млн. лет назад). Пермокарбоновое оледенение (300 млн. лет назад) приходится на регрессию.
А дальше, увы, противоречия. Ордовик-силурийское оледенение как будто связано с регрессией. Но она была относительно непродолжительной и, главное, произошла на фоне длительной трансгрессии — крупнейшей в палеозое, когда уровень океана поднимался на 300 м выше современного. И еще. Начало теплой и влажной юры(185 млн. лет назад) —это продолжение одной из самых глубоких регрессий океана. Он отступил, обнажив огромные пространства суши. Однако «полагающегося» похолодания не наступило.