Смекни!
smekni.com

Некоторые новые представления о причинах формирования стимулирующих эффектов КВЧ-излучения (стр. 3 из 4)

Это не означает знака равенства в механизмах действия КВЧ-излучения и ионизирующей радиации, но некоторые внешние проявления имеют здесь сходство. Подобным действием обладает, по-видимому, и ультрафиолетовое облучение, вызывающее образование свободных радикалов в биологических системах и накопление перекисей. Ряд авторов отмечает, что УФ-облучение приводит к изменению транспорта ионов через мембрану: перекисное окисление липидов в мембранах приводило к повышению их проницаемости при сравнительно небольших дозах УФ [48]. Известно, что перекисное окисление связано также с потреблением кислорода, возможно поэтому при изучении действия УФ-облучения на биомолекулярные фосфолипидные мембраны [49] оказалось, что облучение в атмосфере аргона было значительно менее эффективным, чем в присутствии растворенного кислорода.

Весьма вероятно, что присутствие кислорода при КВЧ-облучении ответственно за дальнейшее образование и накопление радикальных и перекисных состояний и развитие автокаталитических реакций типа цепных, идущих в липидной фазе клеток, в первую очередь, мембран с накоплением конечных продуктов, приводящих к изменениям их функционального состояния, подобно тому, как это было показано ранее при облучении ионизирующей радиацией [21].

Таким образом, одной из причин нетеплового влияния КВЧ-излучения на биологические объекты может быть воздействие образуемой перекиси водорода, сильного акцептора электронов, способного регулировать функционирование многих ферментативных систем. Присутствие образующихся перекисей могло бы интенсифицировать процессы фотосинтеза вместе с накоплением пигментов, что мы и наблюдали в результате КВЧ-облучения [11]. Это хорошо совпадает со взглядами, согласно которым, фотосинтетический кислород формируется не из воды, а из пероксида водорода экзогенного и эндогенного происхождения [49, 50], и значит увеличение перекисей под действием каких-либо факторов в клетке соответствовало бы интенсификации фотосинтеза.

Вопросы пролонгированности действия КВЧ-излучения обсуждались в литературе, но не получили на наш взгляд окончательного толкования. Их пробовали связывать как с "памятью воды", так и с некими неизвестными свойствами клетки.

В работах [51] отмечается, что время "памяти" воздействия КВЧ-излучения на микроорганизмы даже при их постоянных пересевах может достигать нескольких месяцев, причем возвращение к исходным свойствам совершается постоянно. Наблюдается, по мнению авторов, "запоминание" организмом воздействий КВЧ на более или менее длительное время [52, 38].

По нашим данным действие КВЧ-излучения на фотосинтезирующие организмы имеет пролонгированный характер, постепенно ослабевая ко второму пассажу на фоне сохраняющегося повышенного количества пигментов в клетках (табл.1). Эти данные свидетельствуют о сохранении стимулирующего эффекта облучения на прирост биомассы при последующих пассажах облученной культуры S.platensis. В связи с этим представляло интерес выяснить, как меняется при этом фотосинтетическая активность. Оказалось, что она у облученных ранее культур гораздо выше контрольных, что совпадает с данными по приросту биомассы. К 30 суткам роста фотосинтетическая активность во всех вариантах выравнивалась (табл.2).

Табл.1. Пролонгированное действие стимулирующего эффекта КВЧ-излучения у S.platensis (биомасса в г/л)

Длина волны, мм Оптическая плотность, D Прирост биомассы по сравнению с контролем, %
10 сут 20 сут 30 сут
7,1 1,14 3,20 8,40 22,8
6,5 1,40 3,80 11,7 71,0
5,6 1,14 5,60 10,44 52,6
Контроль 1,04 2,92 6,84

Табл.2. Изменение фотосинтетической активности при пролонгированном действии КВЧ-излучения у S.platensis

Длина волны, мм Биомасса, D Прирост биомассы, % Выделение O2 нмоль/мин/D Стимуляция фотосинтеза, %
20 сут
7,1 2,72 9,6 16,3 17,2
6,5 3,28 32,2 15,05 8,3
5,6 4,8 93,5 8,23 -
Контроль 2,48 13,9
30 сут
7,1 5,88 - 14,5 2,8
6,5 10,2 41,6 11,2 -
5,6 9,0 25,0 15,5 9,9
Контроль 7,2 14,1

Мы определяли также спектральные характеристики при пролонгированном действии КВЧ-облучения при длине волны 8,34 мм у культур P.viridis на 20 сутки в первом пассаже после облучения. Контролем служила необлученная культура. Результаты измерений представлены в табл.3. Видно, что увеличение количества пигментов, свидетельствующее об интенсификации процесса фотосинтеза в результате действия КВЧ-излучения при оптимальных параметрах, сохраняется в течение значительного времени, особенно при оптимальном времени облучения, равном 60 мин.

Табл.3. Пролонгированное действие КВЧ-излучения на структуру пигментов у зеленой водоросли P.viridis (lambda = 8.34 мм, P = 2,7 мВт/см2, первый пассаж)

Время облучения, мин Оптическая плотность, D
Хлорофилл a Хлорофилл b Каротиноиды + хлорофилл
15 0,61 0,37 0,87
30 0,63 0,38 0,89
60 0,78 0,48 1,03
Контроль 0,58 0,36 0,84

Вряд ли пролонгированный характер действия однократного КВЧ-облучения можно связывать с его мутагенным действием, которое исследовалось, но не подтвердилось у других объектов, и что можно объяснить низкой поглощаемой энергией миллиметровых волн. Мы также не наблюдали каких-либо морфологических изменений в клетках облученных культур.

Пролонгирование можно было бы объяснить, по нашему мнению, с одной стороны, - затуханием самоускоряющихся механизмов развития стимуляции, а с другой - возвращением к норме функционального состояния мебран клеток.

По имеющимся литературным данным относительно "памяти воды" высказывалось мнение, что она сохраняется после облучения электромагнитным излучением в течение нескольких суток [53]. Такой же пролонгированный характер действия КВЧ-излучения наблюдался на гетеротрофных микроорганизмах - E.coli, дрожжеподобном грибе Endomyces fibuliger, спиртовых и пивоваренных дрожжах [54].

Обсуждение

Нами были в этой работе рассмотрены различные факты и данные, которые так или иначе связаны с поставленными в начале статьи вопросами. Можно, как нам кажется, не повторять приведенные литературные подтверждения развиваемым взглядам и наши собственные данные. Можно лишь еще раз подчеркнуть, что данные по соотношению фотосинтеза и темнового дыхания, а также по поглощению и выделению ионов, полученные нами, позволяют говорить об изменениях транспортной функции мембран, связанных, возможно, с развитием самоускоряющихся механизмов, развивающихся в их липидной фазе в присутствии кислорода, как о важнейшей вероятной причине, влияющей на метаболизм облученных клеток, в том числе на проявление стимулирующих эффектов.

Радикальные и перекисные состояния, возникающие при КВЧ-облучении, по нашему мнению, могут быть важнейшим звеном в механизмах самоускорения, сопровождающих развитие первичных реакций при действии КВЧ-излучения.

Тот факт, что стимулирующее действие КВЧ-излучения снимается при облучении цианобактерии Spirulina platensis в атмосфере аргона [20] может быть объяснен тем, что под действием КВЧ-излучения меняется либо активность кислородзависимых реакций в клетке, либо в аэробных условиях образуются реактивные формы кислорода (РФК). Известно, что РФК в достаточно низких концентрациях могут оказывать многостороннее регуляторное действие на биосистемы. Перекись водорода также относят к активным формам кислорода (АФК), образуется она из супероксида под действием супероксиддисмутазы.

Величина образующихся концентраций перекиси водорода и других перекисных состояний определяет развитие тех или иных биологических эффектов от стимуляции фотосинтеза до повреждения клетки [55].

На основании литературных и собственных экспериментальных данных мы можем предложить следующий гипотетический механизм действия КВЧ-излучения на процессы жизнедеятельности фотосинтезирующих организмов:

Литература

Девятков Н.Д., Голант М.В., Бецкий О.В. Особенности медико-биологического при-менения миллиметровых волн. - М.: ИРЭ РАН, 1994.

Тамбиев А.Х., Кирикова Н.Н., Яковлева М.Н., Мантрова Г.М., Гусев М.В. Стимуля-ция роста сине-зеленых водорослей при действии электромагнитного излучения ММ диапазона низкой интенсивности. - Применение ММ излучения низкой интенсивности в биологии и медици-не. - М.: ИРЭ АН СССР, 1986.

Tambiev A.H., Gusev M.V., Kirikova N.N., Beckiy O.V., Gulaev U.V. Stimulation of growth of cyanobacteria by millimeter electromagnetic radiation of low intensiveness. - Trade Exibition Microbe-86. XIX Intern. Congr. Microbiol., September 7-13:Abstr. - Manchester, England, 1986.

Тамбиев. А.Х., Кирикова Н.Н., Лапшин О.М., Яковлева М.Н., Мантрова Г.М. Изме-нение реакционной способности экзометаболитов сине-зеленой водоросли спирулина под дейст-вием ММ излучения. - Медико-биологические аспекты миллиметрового излучения. - М.: ИРЭ АН СССР, 1987.

Петров И.Ю., Бецкий О.В. Изменение потенциалов плазматических мембран клеток листа зеленого растения при электромагнитном облучении. - ДАН СССР, 1989, т. 305, № 2.

Шестопалова Н.Г., Баева Т.И., Баркова И.Н. Реакция растений на действие радио-волн миллиметрового диапазона. - Применение КВЧ излучения низкой интенсивности в биологии и медицине. - М.: ИРЭ АН СССР, 1989.

Тамбиев А.Х., Кирикова Н.Н., Лапшин О.М. и др. Стимулирующее действие электро-магнитного излучения миллиметрового диапазона низкой интенсивности на рост микроводорос-лей. - Вестн.Моск.ун-та. Сер.16.Биология, 1990, № 1.