превращается в керровскую или в случае, если тело обладало электрическим зарядом, керр-ньюмановскую черную дыру, свойства которой однозначно определяются значениями трех параметров: М — массы, J — углового момента и Q — заряда. После образования стационарной черной дыры все особенности внутреннего строения сколлапсировавшего тела, наличие в нем источников различных полей, кроме электромагнитного, связанного с зарядом Q,становятся недоступными для наблюдения. Подобные черные дыры, обладающие одинаковыми значениями параметров М, J и Q, неотличимы друг от друга. Все остальные характеристики, которыми обладало коллапсирующее тело (такие, как мультипольные гравитационные и электромагнитные моменты, заряды, связанные с другими взаимодействиями (например, сильным и слабым и т. п.), забываются черной дырой.
Физическая причина этого состоит в следующем. Любое физическое поле, обладая энергией, притягивается черной дырой. Поэтому любой элемент объема с таким полем около черной дыры обладает весом. Связанные с полем натяжения проявляются в виде давления со стороны поля на поверхность объема, приводя к “выталкивающей силе”, аналогичной силе Архимеда. Физическое поле может находиться в равновесии около черной дыры, т. е. быть стационарным, если вес поля в любом элементе объема в точности компенсируется “выталкивающей силой”. Если вне черной дыры нет источников полей, то выполнение этого своеобразного “закона Архимеда” оказывается возможным только для таких конфигураций гравитационного и электромагнитного полей, которые отвечают случаю керр-ньюмановской черной дыры. Во всех остальных случаях элемент поля либо “всплывает”, либо “тонет”. После этого процесса перестройки поля, сопровождаемого излучением, черная дыра сохраняет только те характеристики, которые она не способна сбросить при излучении, — массу, угловой момент и электрический заряд.
Теорема Хокинга. Хотя детальное описание процесса перестройки поля и превращения черной дыры в стационарную представляет собой довольно сложную задачу, этот процесс подчиняется одной общей закономерности, установленной английским физиком С. Хокингом в 1972 г.: площадь поверхности черной дыры не может уменьшаться со временем (рис. 5). Соответствующая
Рис. 5. Возможные процессы с черными дырами. Иллюстрация к теореме Хокинга.
Плоскости t1, t2, t3обозначают пространственные сечения в соответствующие моменты времени, S0(tl) — площадь черной дыры о в момент времени ti. Две черные дыры могут сливаться в одну, черные дыры могут возникать, площадь поверхности одиночной черной дыры возрастает со временем. Одна черная дыра не может распасться на две или более черных дыр. Теорема Хокинга утверждает, что общая площадь поверхностей черных дыр в момент ( является неубывающей функцией времени
теорема была доказана им при самых широких предположениях, среди которых наиболее существенным является предположение о положительности плотности энергии вещества и физических полей, с которыми взаимодействует черная дыра. Это предположение, безусловно справедливое в рамках классической физики, мо-
жет, однако, нарушаться при учете квантовых эффектов, Доказательство этой теоремы основано на том, что падение в черную дыру вещества и поля, плотность энергии которых положительна, приводит к возрастанию энергии черной дыры, а следовательно, и площади ее поверхности. Для невращающейся незаряженной черной дыры в этом легко убедиться, используя связь между массой М и площадью поверхности А : А = = 16pi(GM/c2)2, Обратный процесс извлечения вещества и энергии из-под горизонта событий невозможен.
Теорема Хокинга справедлива и в более общем случае, когда имеется несколько черных дыр. При их взаимодействии сумма площадей поверхностей черных дыр не уменьшается со временем. Используя эту теорему, удается, в частности, доказать, что одиночная черная дыра не может распасться на две меньшие черные дыры. Для того чтобы убедиться в этом, предположим сначала, что процесс распада черной дыры с массой М, угловым моментом J и зарядом Q возможен, и в результате этого процесса образуются две далеко отстоящие друг от друга черные дыры с массами М1 и М2, угловыми моментами J1 и J2 и зарядами Q1 и q2. В соответствии с .законами сохранения энергии и электрического заряда Q = Q1 + Q2, M>=M1+M2
Неравенство возникает из-за того, что часть энергии при распаде может быть унесена гравитационным, а при наличии заряда — и электромагнитным излучением. Это излучение может унести также полный угловой момент или часть его. Можно убедиться, что эти соотношения противоречат условию возрастания площади поверхности черных дыр: A1+A2>=A.
Обратный процесс слияния двух черных дыр возможен. Этот процесс может сопровождаться излучением гравитационных волн. Если при слиянии черных дыр с массами М1 и М2образуется дыра с массой М, то уносимая излучением доля энергии epsilon=(M1 + M2—M)/(M1+M2) не превосходит величины 1—2-3/2= 0,64647... Если заряды этих дыр равны нулю или имеют одинаковый знак, то epsilon<1/2- Если к тому же черные дыры не вращаются и J1 = J2 = 0, то epsilon< 1 —2 -2/2 = 0,2929...
Возможен ли коллапс малых масс? Прервем на время рассказ об удивительных свойствах черных дыр, чтобы ответить на неизбежный вопрос: “А какие есть основания считать, что черные дыры действительно существуют в природе?”
Для того чтобы тело с массой М образовало черную дыру, необходимо сжать его до размера порядка гравитационного радиуса, при этом плотность окажется порядка р{ро}~M/(4/3piR3g)=Зс6/(32piG3М2)~7,3-1082M-2 г/см3 (М — масса в граммах). Еще задолго до достижения таких плотностей возникает необходимость преодолеть сопротивление обычных сил отталкивания. Самостоятельному переходу малых масс в энергетически выгодное состояние черной дыры препятствует энергетический барьер, высота которого определяется величиной необходимой работы против сил давления. Для больших масс такого барьера нет. Чтобы оценить критическую массу, при которой энергетический барьер исчезает, рассмотрим однородный шар, составленный из N нейтронов. Тогда, считая, что давление нейтронного вещества определяется уравнением состояния идеального (вырожденного) ферми-газа, для высоты энергетического барьера получаем значение порядка N?/3т Пл с2, где mПл=
= sqrt[-hc/G] примерно=2,8 • 10-5 г — так называемая планковская масса. Если сравнить это выражение с полной массой покоя системы из N барионов Nmnс2 (mn = 1,67-10-24г — масса нейтрона), то видно, что при N<Nкр = = (тпл /тn)3 ~- 1057 действительно имеется барьер, препятствующий гравитационному коллапсу вещества {3 В 1962 г. известный советский физик Я. Б. Зельдович заметил, что с учетом квантовых эффектов коллапс малых масс оказывается возможным, однако поскольку этот процесс связан с квантовым подбэрьерным просачиванием, то вероятность его ничтожно мала. Для того чтобы предотвратить возможное недоразумение, подчеркнем, что мы рассматриваем в этом разделе вопрос о коллапсе изолированной массы. В среде с высокой плотностью и давлением возможно образование черных дыр меньшей массы. }.
О том, насколько велик этот потенциальный барьер в случае малых масс, позволяет судить следующий пример. Если бы мы захотели создать малую черную дыру, заставив сколлапсировать 1600 т железа, на преодоление барьера нам бы пришлось затратить энергию, выделяемую при термоядерном горении 2*1013 т дейтерия. Иными словами, нам бы потребовалось взорвать весь дейтерий, содержащийся в земном океане! Поэтому в современной Вселенной возможно образование черных дыр только с массой большей или порядка Мкрит.= = тп Nкрит.~-1033 г. Если теперь вспомнить, что масса средней звезды как раз имеет такой порядок (масса Солнца равна 2*Ю33 г), то возникает закономерный вопрос, не возникают ли черные дыры естественным образом на каком-либо этапе эволюции звезд.
Эволюция звезд. Звезды возникают из облаков газа и пыли, имеющихся во Вселенной. Первоначальные неоднородности этих образований возрастают со временем. В этом проявляется характерное для гравитационного взаимодействия свойство неустойчивости, уже отмечавшееся ранее. В результате этого процесса возникают массивные сгущения с массами, во много раз большими солнечной массы. Подобная протозвезда сжимается, при этом ее первоначальная потенциальная гравитационная энергия превращается при сжатии в тепловую и температура в ее центре растет. Когда она достигает 106 К, начинаются термоядерные реакции.
Доля водорода, наиболее распространенного элемента Вселенной, в звездах высока — от 50 до 80%, а вместе с гелием он составляет от 96 до 99% массы звезды. При термоядерной реакции водород превращается в гелии и выделяется та энергия, которая компенсирует звезде ее потери на излучение. В термоядерной топке такой звезды, как наше Солнце, ежесекундно превращается в гелий ~600 млн. т водорода и при этом освобождается энергия, эквивалентная (согласно формуле Эйнштейна Е = тс2) массе ~4 млн. т. Однако запасы водорода в звездах настолько велики, что их хватает на миллиарды лет. Давление нагретого газа противостоит в звезде гигантским силам гравитационного притяжения, горящие звезды оказываются устойчивыми и, пока не исчерпались запасы водородного горючего, параметры звезды (такие, как температура, светимость), изменяются крайне незначительно.
После выгорания водорода давление падает и центральная область звезды сжимается. При сжатии растут плотность и температура и, когда температура достигает 100 млн. град., начинается термоядерное горение накопившегося гелия, Резкое выделение энергии при этом заставляет внешнюю часть звезды расшириться до гигантского размера в сотни миллионов километров, и звезда превращается в красный гигант. Сгорание гелия происходит быстрее, и эта стадия занимает существенно меньшее время, чем стадия горения водорода. Для звезд гораздо массивнее Солнца при дальнейшем сжатии ядра после выгорания гелия возможны и другие типы термоядерных реакций, приводящих к появлению более тяжелых элементов, однако и эти стадии лишь слегка оттягивают неизбежный конец.