Смекни!
smekni.com

Введение в физику черных дыр (стр. 11 из 13)

ЧЕРНЫЕ ДЫРЫ, ТЕРМОДИНАМИКА, ИНФОРМАЦИЯ

Черные дыры и термодинамика. Открытие теплового излучения черной дыры было полной неожиданностью для большинства специалистов, хотя к моменту этого открытия уже существовало довольно много соображений, свидетельствующих о тесном переплетении физики черных дыр и термодинамики.

Известный американский физик Дж. Уилер, по-видимому, первым обратил внимание на то, что в рамках классической теории тяготения уже сам факт существования черной дыры противоречит закону возрастания энтропии. Действительно, представим себе, что черная дыра поглощает горячее тело, обладающее некоторым запасом энтропии. Тогда внешний наблюдатель видит уменьшение полной энтропии мира, доступного его наблюдению.

Если мы не хотим отказаться от закона возрастания энтропии только по той причине, что во Вселенной где-то образовалась черная дыра, следует сделать вывод, нш всякая черная дыра сама по себе обладает определенным запасом энтропии и что горячее тело при падении передает ей не только массу, угловой момент и заряд, но и свою энтропию S, так что энтропия черной дыры возрастает на величину, не меньшую 5. Однако еще раньше, чем пришли к такому выводу, появилось довольно много указаний на то, что свойства одной из характеристик черной дыры — площади ее поверхности А напоминают свойства энтропии. Действительно, согласно теореме Хокинга, при любых классических процессах площадь Aне убывает, т. е. ведет себя так же, как энтропия. Вообще оказалось, что аналогия между физикой черных дыр и термодинамикой простирается довольно далеко. Она относится как к конкретным термодинамическим устройствам (типа тепловой машины), так и к общим законам термодинамики, каждому из которых нашелся свой аналог в физике черных дыр. Четыре закона физики черных дыр. Так же как термодинамическая система, произвольная черная дыра после релаксационных процессов, сопровождающихся излучением гравитационных волн, приходит в равновесие (стационарное состояние), в котором она полностью .описывается заданием конечного числа параметров: М, J, Q. Внутренняя энергия Е = Мс2стационарной черной дыры может быть найдена, если известны площадь поверхности черной дыры А, ее угловой момент и электрический заряд. Для двух стационарных черных дыр с” слегка отличными значениями площади б/4 (б-дельта), углового момента б/ и электрического заряда бQ внутренняя энергия отличается на величину бЕ = бМс2, равную:

Первый закон физики черных дыр бE=(kappa*c2/8piG)*бA+OMEGA*бJ+ФбQ

Здесь kappa — поверхностная гравитация,OMEGA — угловая скорость и Ф — электрический потенциал черной дыры. Второй и третий члены в правой части этой формулы описывают изменение энергии вращения и электрической энергии. Внешне эта формула напоминает первое начало термодинамики: бE = T*бS + OMEGA*бJ+ФбQ, дающее выражение для изменения внутренней энергии термодинамической системы при изменении ее энтропии 6S, углового момента бJ и заряда бQ.

Дж. Бекенштейн, ученик Дж. Уилера, отнесся к этой аналогии серьезно, приписав черной дыре энтропию S, пропорциональную ее площади А, и температуру Т, пропорциональную ее поверхностной гравитации kappa.. Для того чтобы продемонстрировать полезность термодинамического подхода в физике черных дыр и оценить коэффициенты пропорциональности в выражении для энтропии и температуры черной дыры, он рассмотрел модель тепловой машины, превращающей теплоту в работу. Ее действие основано на сбрасывании в черную дыру, выступающую в роли холодильника, некоторого количества тепла из опускаемого к горизонту событий контейнера, заполненного тепловым излучением.

Дж. Бекенштейн оценил КПД этой своеобразной тепловой машины и, используя формулу Карно, получил для температуры черной дыры выражение, лишь на численный множитель порядка 1 отличающееся от хокин-говской температуры черной дыры. Если использовать приведенное выше выражение для бE и положить температуру черной дыры равной хокинговской, то соответствующее значение энтропии черной дыры оказывается равным:

Sчд=Ar/4(hG/c3)тождесвенно= Ak/4l2пл

Теорема Хокинга, позволяет записать аналог второго начала термодинамики в видег

Второй закон физики чёрных дыр

бSчд>=0.

В обоих случаях (в термодинамике и физике черных дыр) второе начало означает присущую системе в целом существенную необратимость и выделяет тем самым направление времени. В термодинамике .закон возрастания энтропии приводит к тому, что часть внутрен? ней энергии, которая не может быть превращена в работу, увеличивается со временем. Совершенно аналогично закон возрастания площади черной дыры означает, что доля внутренней энергии черной дыры, которую из нее нельзя извлечь, возрастает со временем. Как и в термодинамике, величина SЧД связана с невозможностью получить информацию о строении системы, в данном случае о внутренности черной дыры.

На первый взгляд наличие хокинговского испарения, в результате которого происходит уменьшение площади поверхности черной дыры, существенно подрывает рассматриваемую аналогию. Однако это не так. Поскольку хокинговское излучение носит тепловой характер, оно обладает энтропией SИЗЛ, причем оказывается, что всегда сумма энтропии этого излучения и энтропии черной дыры не убывает со временем. Поэтому выполняется

Обобщенный второй закон физики черных дыр

бSЧд + бSвещ>=0,

где SЧд— сумма энтропии черных дыр, в рассматриваемой системе и Sвещ — полная энтропия вещества и излучения вне черных дыр. Тот факт, что в обобщенный закон на одинаковом основании входят, казалось бы, разные по своей природе величины, еще раз указывает на их глубокое родство.

В термодинамике равновесие невозможно, если температура разных частей системы различна. Наличие состояния термодинамического равновесия и существование .температуры в термодинамике постулируются нулевым началом. В физике черных дыр справедливо аналогичное утверждение:

Поверхностная гравитация kappa стационарной черной дыры постоянна везде на горизонте событий.

Если поверхностная гравитация в разных точках поверхности черной дыры различна, то такая черная дыра нестационарна и предоставленная самой себе с течением времени приходит в стационарное состояние с постоянным к. Этот нулевой закон выполняется и для системы, состоящей из термодинамической системы и черной дыры.

Наконец, в полной аналогии с третьим законом термодинамики можно сформулировать Поверхностную гравитацию невозможно обратить в нуль посредством любого конечного числа операций.

Сформулированные законы физики черных дыр оказываются крайне полезными при рассмотрении различных явлений с участием черных дыр. Точно так же, как начала термодинамики, они позволяют изучать многие общие характеристики таких процессов, не привлекая конкретные решения сложных динамических уравнений. Черные дыры, энтропия и информация. Наличие связи тепловых свойств черных дыр с потерей информации об области пространства-времени внутри ее находится в согласии с общим информационным подходом к термодинамике, который восходит к классикам теории теплоты, был сформулирован Л. Сциллардом и развивался многими физиками и математиками. Суть этого подхода состоит в утверждении, что существует прямая связь между недостатком информации о физической системе и величиной ее энтропии.

Прежде чем привести более точную, количественную формулировку этой связи, напомним, как происходи? переход обычной динамической системы в состояние тер модинамического равновесия. В процессе такого пере хода система быстро “забывает” свое начальное состоя- ние, происходит “запутывание” (стохастизация) движет ния составляющих ее частиц. Вследствие присущей си стеме взаимодействующих частиц динамической не устойчивости малые неопределенности в начальных ус- ловиях быстро возрастают. В результате возникают бы; строе перемешивание состояний частиц и равномерное заполнение всей доступной системе области значений динамических переменных. Аналогичным образом взаимо действие динамической системы с термостатом приводит к тому, что все макроскопические состояния, отвечаю щие заданным микроскопическим параметрам системы, оказываются равновероятными. Иными словами, в тер модинамике состояние системы с заданным набором макроскопических параметров является крайне вырож-. денным, поскольку ему отвечает большое число N разт личных микроскопических состояний. Мерой этого выт рождения и служит энтропия системы S = klnN.

Равновероятность вырожденных состояний означает, что чем больше N, тем меньшей информацией о том, в каком из конкретных состояний находится система, мы располагаем. В простейшем случае, когда до некоторого процесса имелось Р равнозначных ответов на вопрос о состоянии системы, а после него число равнозначных ответов стало р, изменение информации в результате этого процесса равно{/\-дельта треугольник} /\I = kln(P/p). Если /\I>0, мы имеем дело с приростом информации, в обратном случае — С ее убылью. Переход динамической системы в состоял ние термодинамического равновесия в процессе стоха-стизации связан с потерей информации, и /\I = — klnN. В нашем простом случае мы приходим к важному соотношению: /\S = — /\I, имеющему общий характер. Уменьт шение количества информации о физической системе соответствует увеличению ее энтропии.

Анализ конкретных процессов измерения приводит к следующему утверждению, являющемуся ключевым для информационного подхода к термодинамике: всякое измерение, позволяющее получить дополнительную информацию о состоянии системы и тем самым уменьшить ее энтропию, необходимо сопряжено с такими действиями, которые сами приводят к возрастанию энтропии в окружающем мире, перекрывающем ее понижение в системе,

В черной дыре информация о состоянии сколлапси-ровавшего вещества отсекается мощными силами тяготения. Чёрная дыра “забывает” свою предысторию, сохраняя память только о “макроскопических” характеристиках: массе, заряде и угловом моменте. В соответствии с этим энтропия черной дыры SЧд служит мерой потери информации в результате коллапса, и число различных (“микроскопических”) состояний системы, коллапс которой приводит к образованию черной дыры с заданными параметрами М, J, Q, должно быть пропорционально ехр(Sчд/k). К сожалению, прямое вычисление этого числа состояний представляет собой весьма сложную и еще не решенную задачу.