М. К. Гусейханов, Дагестанский государственный университет, Махачкала
Введение
Идеи антропного космологического принципа, развивавшиеся в последнем столетии XX века, представляют большой научный интерес с точки зрения ответа на вопросы происхождения и эволюции окружающего мира. Основная идея этого принципа состоит в том, что фундаментальные свойства Вселенной, значения основных физических констант и даже форма физических закономерностей тесно связаны с фактом структурности Вселенной во всех масштабах - от элементарных частиц до сверхскоплений галактик - с возможностью существования условий, при которых возникают сложные формы движения материи, жизнь и человек.
Проблема возникновения структурности мира и жизни во Вселенной традиционно трактуется следующим образом: окружающая нас Вселенная обладает определенными физическими свойствами и закономерностями, познаваемыми нами. Как в таком случае происходит эволюция Вселенной, приводящая к достаточно сложным структурам, как зарождается и эволюционирует в такой Вселенной жизнь? От ответа на эти, во многом еще не решенные вопросы, зависит возможность существования жизни в других областях Вселенной, в другие времена и направления ее поиска.
Любая физическая теория, например уравнения Максвелла в электродинамике, ставит перед собой задачу дать полное физическое описание той или иной системы, если известен полный набор начальных данных, поскольку в различных физических явлениях начальные данные различны. Но когда мы обращаемся к космологии, вопрос о начальных данных и фундаментальных постоянных неразрывно связан с тем, почему Вселенная именно такая, какой мы ее наблюдаем. Прежде чем подойти к ответу на этот вопрос, рассмотрим, какими представляются современному естествознанию начальные условия нашей Вселенной.
1. Современная космология
Наиболее важным в современной стандартной космологической модели Вселенной является вопрос о свойствах ранней Вселенной. Удовлетворительное описание свойств ранней Вселенной дается в модели В. де Ситтера. Более поздние промежутки эволюции Вселенной даются в модели А.А. Фридмана. Возникающая при этом зависимость размеров Вселенной от времени может быть примерно описана кривой, показанной на рис. 1. Время перехода от деситтеровской стадии расширения (1 ) к фридмановской (2 ) обозначено через tF . Физический смысл времени tF в том, что оно показывает момент радикального изменения закона расширения Вселенной. Переход от одного закона к другому в момент tF означает радикальное изменение основных свойств Вселенной в этот момент, изменение ее фазового состояния.
Модель экспоненциального роста размеров Вселенной де Ситтера
на начальной стадии ее эволюции получила название модели раздувающейся Вселенной [1]. По этой модели при вся энергия мира была заключена в его вакууме. Деситтеровская стадия расширения длилась примерно 10-35 с. Все это время Вселенная быстро расширялась, заполняющий ее вакуум как бы растягивался без изменения своих свойств. Образовавшееся состояние Вселенной было крайне неустойчивым, энергетически напряженным. В таких случаях достаточно возникновения малейших неоднородностей, играющих роль случайной затравки, чтобы вызвать переход в другое состояние (в качестве примера можно привести явление кристаллизации). При переходе вакуума в другое состояние мгновенно выделилась колоссальная энергия за счет разности его начального и конечного состояний. Примерно за 10-32 с пространство раздулось в громадный раскаленный шар с размерами много большими видимой нами части Вселенной. При этом произошло рождение из вакуума реальных частиц, из которых со временем сформировалось вещество нашей Вселенной.В последнее время усиленно обсуждаются причины того первотолчка, который был началом расширений нашей Вселенной. Один из возможных механизмов, основанный на гипотезе о существовании кванта единого пространства-времени, описан в теории инфляционной Вселенной. Рассмотрим ее основные положения и выводы.
А. Эйнштейн выдвинул идею о существовании космического отталкивания. Если учесть эти силы в уравнениях динамики Вселенной, то полное ускорение оказывается равным
Ускорение тяготения атяг
а ускорение отталкивания аотт в соответствии с гипотезой Эйнштейна пропорционально R:
$а_{отт} = const \cdot R.$
Числовое значение константы в этой формуле можно найти определив среднюю плотность вещества
во Вселенной. В настоящее время считается, что очень близко к 10-29 г/см3 игде
- космологическая постоянная, равная ~10-56 см-2.Рассмотрим случай, когда во Вселенной нет вещества, она пуста. При этом М = 0 и атяг = 0. Динамика Вселенной описывается ускорением аотт. Можно показать, что при этом две пробные частицы, помещенные в такую пустую Вселенную, будут удалятся друг от друга по закону
Согласно современным концепциям естествознания, вакуум не пустота, в физическом вакууме происходят процессы рождения и уничтожения виртуальных частиц. Это своеобразное кипение вакуума нельзя устранить, ибо оно означало бы нарушение одного из основных законов квантовой физики, а именно соотношения неопределенностей Гейзенберга. Как показал Я.В. Зельдович в 1967 году, в результате взаимодействия виртуальных частиц в вакууме появляется некоторая плотность энергии и возникает отрицательное давление. Такое вакуумподобное состояние неустойчиво, и с течением времени оно распадается, превратившись в обычную горячую материю. Энергия вакуумподобного состояния перейдет в энергию обычной материи, гравитационное отталкивание сменится обычной гравитацией, замедляющей расширение. С этого момента Вселенная начнет развиваться по известной стандартной космологической горячей модели эволюции. Рассмотрим исходные положения этой модели и ее основные результаты.
Горячая модель Вселенной, как и любая другая, исходит из наблюдаемого в настоящее время факта ее расширения и объясняет три достоверно установленных факта: наличие барионной асимметрии Вселенной; космическое отношение числа фотонов к числу барионов, примерно равное 109 ; однородность и изотропность реликтового излучения. Теория Большого Взрыва в наши дни считается общепринятой. Согласно этой теории, наша Вселенная развивалась из первоначального состояния, которое можно представить в виде сгустка сверхплотной раскаленной материи. Излучение и вещество в нем находились в тепловом равновесии. В этой ранней Вселенной фотоны эффективно взаимодействовали с веществом, а число частиц было равно числу античастиц.
Для объяснения барионной асимметрии Вселенной предполагается, что распад лептокварков происходит с превышением числа рождающихся кварков над антикварками. Исходя из наблюдаемой сейчас барионной асимметрии, число кварков должно относиться к числу антикварков как 1000 000001 : 1000000000. Физическим обоснованием такого предположения является существование в микромире процессов, идущих с нарушением зарядовой симметрии (распад К0-мезонов). При этом важным является то, что барионная асимметрия не зависит от начальных условий. Родившиеся в результате распада лептокварков антикварки и кварки аннигилируют, небольшой же избыток кварков выживает и является материалом, из которого строится вещество Вселенной. Нейтроны и протоны - основные строительные элементы нашего вещества - появляются через 10-6 с после Большого Взрыва. До времени
с подавляющая часть энергии сгустка заключена в излучении, после этого момента в связи с образованием протонов - в веществе. По мере расширения и остывания Вселенной в момент времени t = 3 мин 44 с начинается образование стабильных ядер легких элементов - эра космологического нуклеосинтеза. Длительность этой эры невелика - всего полчаса. Рассчитанная по этой модели концентрация гелия во Вселенной (около 25% по массе) совпадает с данными астрофизических наблюдений.После эры космологического нуклеосинтеза Вселенная тихо остывает. Ее температура снижается настолько, что электроны начинают соединяться с ядрами, образуя атомы. Энергии фотонов не хватает для их разрушения, с этого момента излучение отрывается от вещества. Дальнейшая эволюция излучения происходит в полном соответствии с законами теплового излучения. Теоретическое значение температуры этого реликтового излучения, дожившего до наших дней, в точности соответствует экспериментальным данным. Таким образом, только водород и гелий образуются собственно в Большом Взрыве. Тяжелые элементы образуются позднее в недрах звезд и рассеиваются в пространстве благодаря звездным взрывам.
Для дальнейшего развития наиболее важным представляется то, что в первые мгновения образования нашей Вселенной сформировался весь тот набор физических закономерностей и фундаментальных постоянных, которые и обусловили ход последующей эволюции Вселенной.
2. Фундаментальные мировые постоянные