Определение 3.
Множество Настоящего ( PR ) - это множество всех точек С; принадлежащих тому множеству и полученных путем пересечения множеств Будущего и Прошлого,
. Эти точки лежат на временной оси так, что образуют открытое множество каждая точка, которой является внутренней (причем , где - точки множества); приэтом множество PR - есть ограниченное множество, т. е. множество ограниченное сверху и снизу. В связи с этим, возможно указать мажорант и минорант для PR , т. е. два вида границ:верхнию
и нижнию , (Рис. 1,2).На ( Рис.2 ) показана Венна ( J. Venn ) [5] диаграмма (графический способ изображения формул алгебры множеств), которая наглядно демонстрирует физический смысл выше указанных дефиниций. На этой диаграмме уверенно просматривается калибровка между границами множеств Прошлого, Настоящего и Будущего. Эта калибровка сведена в систему тождеств
( 1 )Определение 4.
Минорант Настоящего накладывается на мажорант Прошлого и мажорант Настоящего соединяется с минорантом Будущего. Эти границы гладко сшиваются между собой, без разрывов.
Определившись по некоторым общим ключевым вопросам топологической интерпритации конструкции Времени [3], перейдем к анализу двух частных положений, которые тесным образом связаны с топологическим Временем.
Поскольку, с одной стороны, при задании топологического Времени мы руководствовались строгими принципами топологии, как одной из основных математических структур, а с другой стороны - оперируя реальной спецификой хронологической изменчивости в сложных и масштабных системах, то в связи с этим необходимо выяснить физическую сущность таких составных частей Временной топологии, как пустое множество
и множество Настоящего PR .Запишем следующие две формулировки.
Первая: показать условность существования на универсальном множестве Времени
пустого множества и физически обосновать элиминировку этой категории на .Вторая: представить аргументы в пользу существования переменного характера у Настоящего, которое выражается в том, что при общих физических оценках PR не входит в
в явном виде.Наиболее полное на наш взгляд, решение поставленных выше частных задач можно получить в том случае, если к ним применить алгоритмы алгебры Буля (G. Boole) [5], т.е. алгебры производящей теоретико-множественные операции над множествами. Эта алгебра имеет своеобразные законы действия, которые существенно отличаются от законов действия над числами.
Сформулируем такое предложение.
Предложение 1.
В физически реалистических условиях на универсальном множестве Времени
не просматриваются области индетифицирующиеся с пустым множеством .Дано:
.Доказать: .Доказательство:
1) Перепишем общее выражение для универсального множества Времени
( 2 )2) В теории множеств всякое пустое множество можно представить, как пересечение некоторого множества и его дополнения. Под дополнением множества в алгебре Буля понимается множество всех элементов универсального множества не принадлежащих исходному множеству. Таким образом,
легко записать тремя способами (3)Вообще - то, запись пустого множества в виде триплета ( 3 ) не лишена целесообразности, поскольку мы должны, в силу существования топологии Времени, учитывать все три спектральных компаненты Времени и их дополнения.
3) Учитывая ( 3 ) перепишем ( 2 ) в виде
, (4.1) , (4.2 ) , ( 4.3)Здесь, весьма важным являтся тот факт, что в булевой алгебре при правилах действия над множествами, сведенных в равенства, необходимо строго соблюдать чередование, слева и справа, членов в этих выражениях.
4) Проанализируем формулу ( 4.1 )
Что и требовалось доказать, т.е.
.5) Рассмотрим равенство (4.2 )
Доказали существование равенства вида
6) И, в заключении, проверим выражение (4.3 )
Получили финитный результат типа
.Проведем экспликацию полученных выше результатов применительно к реальным физическим условиям. Для этого, сначала, обратимся к определению
; пустое множество - это множество, не содержащее ни одного элемента. Такого рода ситуация приводит к тому, что на универсальном множестве Времени пустое множество - вырезано. А это значит, что на оси Времени Т1 трудно выделить точки для подобных областей, которые имели бы конкретные координаты. Кроме этого, в алгебре множеств за пустым множеством закреплена функция нуля алгебры чисел, т.е. аддитивная операция с любым произвольно выбранным множеством не меняет этого множества. Таким образом, для процессов связанных с концепцией физического Времени, пустое множество выступает как нуль-момент Времени, т.е. соответствует такой точке, в которой отсчет Времени равен нулю. Существование такой точки можно, вероятно, прогнозировать только в системе координат коррелирующей с точкой начала раздувания Вселенной. На данном же этапе развития представлений о физических процессах окружающего нас Мира, начиная с уровня фундаментальных взаимодействий и кончая масштабами видимой части Вселенной, не возможно найти такую область, где бы реализовывалось выше указанное физическое явление.Значит, достоверно и однозначно указать в естественном Времени точку (точки) эквивалентные
не представляется возможным. Одноко, все же, мы должны сознавать, что условия топологического Времени способствуют тому, чтобы фигурировало бы в общей топологии Времени, как составная часть общего решения. Ведь, по сути дела, пустое множество вводится для того,чтобы мы могли говорить о множествах, как о системах априори существующих. Сформулируем такое предложение.Предложение 2.
Универсальное множество Времени
адекватно двум классам Временных множеств, которые пропорциональны только множеству Будущего F множеству Прошлого Р , а на множество Настоящего PR накладывается принцип переменности.Проведем верификацию этого предложения.
Дано:
.Доказать:
.Доказательство: доказательство будем проводить для общего решения 1Т.
1) Поскольку
и учитывая выражение ( 3 ) представим универсальное множество Времени в виде триады: , (5.2) , (5.2) (5.3)2) Исследуем вариант ( 5.1 )
Таким образом доказано, что выражение
- существует .3) Анализ записи ( 5.2 )
Перед доказательством, целесообразно сделать следующее замечание. Так как, Настоящее PR образовано пересечением Будущего и Прошлого, то легко представить, что дополнение множества Настоящего
есть дополнение пересечений множеств Будущего и Прошлого, т.е. .