Буквенная символика открыла вход в математику поверх барьеров геометрической алгебры и словесных обозначений. Книгопечатание окончательно сделало математику доступной всей массе образованных людей. Стали обычным делом публичные состязания в доказательствах.
Через полвека благодаря Декарту Лейбниц и Ньютон совершили следующий квантовый переход.
Математическое доказательство в Новое время
Ньютон вывел законы Кеплера из закона всемирного тяготения и трех законов движения. Математическое доказательство привело к открытию закона природы. Ньютон пользовался геометрическим языком, и обозначения его "Начал" не повлияли на математическую технологию. Предложенные Лейбницем эффективные обозначения открыли поле деятельности, на котором за триста лет было доказано невероятное количество теорем в созданных на основе новых понятий производной и интеграла многочисленных новых отраслях математики.
Ни отцы-основатели, ни их последователи не могли обосновать свои результаты, оправдывали их только приносимой ими удачей. Вакханалия использования нечетких понятий и методов приводила к неверным результатам, спорам и сомнениям. Выдающимся источником неприятностей была теория пределов с ее свободным обращением с бесконечностью. Блестяще выразился о новой математике Вольтер: "Искусство считать и точно измерять то, существование чего непостижимо для разума". Все попытки выйти из положения, даже предпринятые Эйлером и Лагранжем, потерпели полную неудачу. Внутренняя дисциплина в математике к середине XIX века упала настолько, что Кэли, приведя формулировку теоремы для квадратных матриц и проверив ее для матриц 2х2, не счел "необходимым обременять себя формальным доказательством теоремы в общем случае матрицы любого порядка" и призвал просто поверить ему.
Трудности коренились в том, что новые понятия находились на более высоком уровне абстракции. Грекам было легче, их понятия были ближе к (презираемому!) опыту, а те понятия, которые доставили столько волнений в Новое время, хитроумные греки обходили. Новые понятия были уже не обобщением опыта, а созданием разума, лишенным привычной опоры в наглядности. Язык формул обладал не только притягательной, но и производительной силой.
Героическая эпоха! Не до строгости, когда друзья и недруги рвутся вперед.
Только к концу XIX века в математическом анализе и в алгебре был наведен формальный логический порядок, иными словами, положение было исправлено настолько, что стала возможной дальнейшая критика.
Аксиоматический метод
Формализация математики привела к уточнению определений и аксиом, к логической инвентаризации орудий математического мастерства. Одной из задач в наведении порядка была задача минимизации списка аксиом, исключения из него тех утверждений, которые могли быть выведены из остальных как теоремы.
Попытка этим путем исключить из аксиом геометрии Евклида аксиому о параллельных не удалась. Тогда попытались доказать, что замена этой аксиомы ее отрицанием приведет к тому, что в такой "неевклидовой" геометрии будут получены противоречия, что и "докажет" аксиому Евклида. Противоречия получить не удалось, более того, семейство неевклидовых геометрий стало пополняться. Неевклидовы геометрии противоречили только обыденной интуиции и привычным наглядным представлениям, но были логически безупречны. Попутно выяснилось, наконец, что аксиома о параллельных не зависит от остальных аксиом Евклида.
Гильберт предложил ставший общепринятым вариант аксиоматического построения евклидовой, а заодно и всех остальных геометрий. Этот успех еще раз напомнил о проблеме истинности теории в целом: если существуют разные геометрии и они непротиворечивы, то какая же из них "истинна"? Какая из них имеет место в реальной действительности и как это доказать? И что значит "истинная геометрия"? "Что есть истина?"
Уверенность в том, что математика содержит только абсолютные истины, абсолютно доказанные на основе абсолютных аксиом, была подорвана навсегда. В обстановке замешательства, вызванного появлением неевклидовых геометрий, концепции доказательства удалось остаться вне подозрений.
Новые проблемы
Теория бесконечных множеств к началу ХХ века стала источником беспокойства: в ней обнаружились трудности и противоречия. На этот раз под ударом оказались не изъяны в определениях и доказательствах, а логика доказательств. Как следует понимать утверждение о существовании какого-либо математического объекта? В конструктивных доказательствах существования приводится процесс построения объекта, но есть утверждения "должен существовать", "ложно, что не существует", - как с ними быть?
Можно ли применять логику доказательств, выработанную на конечных объектах, к бесконечным?
Относительно аксиоматической теории остались нерешенными вопросы:
можно ли доказать некоторое утверждение А и доказать его отрицание?
и как доказать, что этого не случится, то есть как доказать, что теория непротиворечива?
всякое ли истинное утверждение можно вывести из аксиом?
и как доказать, что это всегда возможно, то есть что теория полна?
можно ли в рамках аксиоматической теории считать доказанное истинным?
В ходе исследований оснований математики в рамках математической логики возник раздел, изучающий формализованные математические теории. Произошел еще один квантовый переход: появилась метаматематика. Этот термин синонимичен термину "теория доказательств". Логика и математика стали предметом изучения для метаматематики.
Линия Евклид - Лейбниц - Гильберт - Гедель
Современный формализованный (мета)математический язык оформлен в "Principia Mathematica" Расселом и Уайтхедом уже в начале XX века. Они уточнили понятие доказательства как вывода в некотором исчислении, однако предложенный подход к проблеме непротиворечивости не удовлетворил даже авторов.
Гильберт (1862-1943) выдвинул грандиозную программу аксиоматизации математики и физики и приступил к ее реализации. Гильберт полагал, что любое точно сформулированное утверждение можно доказать или опровергнуть средствами аксиоматической теории при условии, что теория непротиворечива. Иными словами, Гильберт сформулировал тезис полноты аксиоматической теории. Что касается непротиворечивости, то эту проблему тоже, казалось, можно будет решить. Линия Евклид - Лейбниц - Гильберт обещала триумфальный успех:
аксиомы дадут коллективное определение употребляемым в их формулировках неопределяемым понятиям;
системы объектов, удовлетворяющие одной и той же системе аксиом (интерпретации), изоморфны, так что теорема, доказанная в одной интерпретации, будет автоматически справедлива для другой.
"С помощью этого нового обоснования математики, которое справедливо можно именовать теорией доказательства, я преследую важную цель: именно, я хотел бы окончательно разделаться с вопросами обоснования математики как таковыми, превратив каждое математическое высказывание в поддающуюся конкретному показу и строго выводимую формулу и тем самым приведя образование понятий и выводы, которыми пользуется математика, к такому изложению, при котором они были бы неопровержимы и все же давали бы картину всей науки".
Давид Гильберт
Гильберт доказал, что евклидова геометрия непротиворечива, если непротиворечива система вещественных чисел. Осталось совсем немного: доказать непротиворечивость арифметики.
Теорема Геделя
Курт Гедель (1906 - 1978) в 1931 году в работе "О формально неразрешимых проблемах "Principia Mathematica" и родственных систем" доказал теорему о том, что любая непротиворечивая аксиоматическая система, включающая аксиомы арифметики натуральных чисел, обладает свойством неполноты: для нее можно указать конкретное утверждение А, для которого в этой системе нельзя доказать ни А, ни его отрицание. Это утверждение находится за пределами системы! И для неполноты любой математической теории достаточно включения в нее простейшего объекта математики - натурального числа.
Гедель доказал полноту исчисления предикатов первой ступени.
В другой теореме Гедель доказывает, что в качестве А можно взять утверждение о непротиворечивости арифметики. Непротиворечивость теории не может быть доказана средствами самой теории.
Теоремы инженера Геделя развеяли мечты математика Гильберта.
"Роль пресловутых "оснований" сравнима с той функцией, которую в физических теориях выполняют поясняющие что-либо гипотезы… Так называемые логические или теоретико-множественные основания теории чисел или любой другой вполне сформировавшейся математической теории по существу объясняют, а не обосновывают их, так же, как в физике, где истинное предназначение аксиом состоит в объяснении явлений, описываемых физическими теоремами, а не в обосновании этих теорем."
Эпистемологические следствия
Одна непротиворечивая теория не может полностью описать реальность; всегда остаются факты или аспекты, которые требуют обращения к другой теории, возможно, несовместимой с первой. Концепция "истинность совпадает с доказательностью" потерпела крах.
"Автоматизация" знания невозможна. Нельзя обойтись без человеческого разума и интуиции, обречена на неудачу. Логика неотделима от человека.
Непротиворечивость математики не может быть доказана.
Математика стала экспериментальной наукой.
Конструктивизм