Смекни!
smekni.com

Вода - энергоноситель, способный заменить нефть. (стр. 1 из 3)

Николай Васильевич Косинов

Введение

Нефть, уголь и природный газ являются основными энергоносителями, заменитель которым еще не найден. Все они являются продуктами Солнца, за миллионы лет накопившиеся на Земле. Сжигание этих энергоносителей с целью получения энергии является основным фактором загрязнения окружающей среды. Природные запасы углеродсодержащих энергоносителей, на образование которых ушли миллионы лет, стремительно истощаются. В связи с этим, по мере роста потребностей общества в энергии, проблема обеспечения энергией все болше обостряется. Существующие способы получения энергии, как тепловой, так и электрической, основанные на сжигании природных энергоносителей, являются губительными для биосферы Земли. Атомная энергетика имеет нерешенную проблему захоронения и утилизации опасных отходов. Все меньше надежд у ученых на успешную реализацию программы управляемого термоядерного синтеза. Решение этой задачи многократно уже отодвигалось на более поздние сроки и теперь видят ее решение не ранее 2050 года. Технологии аккумулирования солнечной энергии пока еще не получили широкого применения, поэтому они не могут выступать альтернативой сжиганию природных энергоносителей.

Как видим, мир еще не нашел экологически чистой энергии и не знает способы ее получения безопасные для биосферы несмотря на огромнейшие затраты на эти цели. Причиной является то, что поиски ведутся в традиционных направлениях, которые в рамках сложившихся представлений, могут привести лишь к небольшим "косметическим" доработкам существующих подходов и не способны вывести на прорывные решения. Прорывным можно считать такое решение, которое позволит найти неисчерпаемый источник энергии, способный заменить нефть, уголь и газ, но, в отличие от последних, не загрязняющий окружающую среду. Стремительное истощение природных энергоносителей выводит задачу поиска принципиально новых способов получения энергии на первый план.

Если проанализировать наиболее эффективные технологии получения энергии, используемые в настоящее время, то можно увидеть определенную закономерность. Суть ее состоит в следующем. На конечной стадии всей цепи энергетических преобразований в современных способах получения энергии появляется новое вещество. Причем, это вещество становится, как правило, более опасным для биосферы, чем исходный энергоноситель. Это является общим признаком для современных способов получения энергии. Это относится и к энергетике, основанной на сжигании природного топлива, и к атомной энергетике, и к ядерному синтезу. Мир уже свыкся с мыслью, что для получения энергии нужно воздействовать на вещество и на конечной стадии вместе с энергией получать, как неизбежное зло, новое вещество. Более того, такой путь считается чуть ли не единственно возможным. А так ли это? Задача состоит в том, чтобы найти новый энергоноситель и совершенно новые способы получения энергии, свободные от традиционной схемы: "вещество в начале энергопреобразваний – энергия и новое вещество в конце энергопреобразваний".

Очевидно, альтернативой существующим способам получения энергии могут стать только такие, в которых на конечной стадии энергетических преобразований не будет появляться опасное вещество или даже будет совсем отсутствовать вещество, как таковое. Такую задачу уже ставят перед собой ученые. Особенно большой интерес к проблеме новой энергии проявляет космическое агенство США NASA. NASA ставит такие задачи, которые, на первый взгляд, могли бы показаться фантастическими. В 1997 году было проведено заседание рабочей группы, на котором рассматривались новые подходы для достижения научного прорыва в космических исследованиях на основе создания двигателей, не требующих запасов горючего на борту. Рассматривались новые методы получения энергии, в том числе энергии физического вакуума, которые могли бы обеспечить научный прорыв в области создания ракетных двигателей, работающих на новых принципах [14, 15].

1. Сравнение эффектичности современных способов получения энергии.

Основные современные способы получения энергии основаны на химических или ядерных реакциях. В таблице 1 для сравнения приведены приближенные значения удельного энергетического выхода для различных способов получения энергии.

Табл. 1.

Удельный энергетический выход в различных способах получения энергии.

1. Сжигание углеродсодержащих энергоносителей. C + O2 → 0.0046 MeV + CO2
2. Распад атомных ядер. U235 → 0.85 MeV + ядерные отходы
3. Термоядерный синтез. D + T → 4He + 17.6 MeV

Наименее эффективны способы получения энергии, основанные на сжигании топлива. Атомная энергетика имеет на несколько порядков лучшие показатели. Наиболее эффективным сейчас считается управляемый термоядерный синтез. Во всех приведенных способах процесс получения энергии сопровождается появлением веществ, небезопасных для биосферы. Исходные химические элементы никуда не деваются, а образуют новые химические или ядерные соединения, которые остаются в виде отходов или попадают в атмосферу. Как видим, наиболее распространенный способ, основанный на сжигании энергоносителей, имеет очень малый энергетический выход и вдобавок очень сильно загрязняет окружающую среду. Не являются идеальными и другие способы получения энергии.

Решение проблемы экологической безопасности видят в использовании водорода в качестве энергоносителя. Водород привлекателен тем, что при его сжигании образуется вода – совершенно безопасное вещество. Считается, что по экологической безопасности у водорода нет конкурентов. Однако реализация этой задачи сдерживается большими энергозатратами на получение водорода из воды. Если нефть, газ и уголь - это готовые энергоносители, то водород в чистом виде на Земле отсутствует. Чтобы получить водород его необходимо добыть из воды, на что затрачивается электроэнергия, ранее полученная путем сжигания все тех же традиционных энергоносителей. Поэтому, экологически чистому использованию водорода все равно предшествует экологически опасный способ получения энергии для разложения воды. На рис. 1 приведена схема энергопреобразований при получении и сжигании водорода.

Рис. 1. Схема энергопреобразований при получении и сжигании водорода.

Для того, чтобы водородная энергетика состоялась, нужно, чтобы полученная энергия при сжигании водорода намного превышала затраченную энергию на его получение. Пока эта задача не решена.

Как видим, все традиционные способы получения энергии подпадают под упомянутую выше схему: "вещество в начале энергопреобразований - энергия и новое вещество в конце энергопреобразований". Новое вещество создает серьезные проблемы, связанные с загрязнением окружающей среды. Не является идеальной в этом плане и водородная технология. Учитывая, что удельный энергетический выход в процессах, основанных на химических реакциях, чрезвычайно мал, то становится понятным, что решение энергетической проблемы необходимо искать на других направлениях. Задача состоит в том, чтобы найти новые способы получения энергии, свободные от недостаков традиционных технологий.

2. Внутренняя структура протона.

Во второй половине прошлого века теоретическая физика пришла к выводу о возможности распада протона [2, 3]. Распад протона представляет собой очень заманчивое явление для цели получения экологически чистой энергии. Протон был открыт в начале 20-х г.г. прошлого века в экспериментах с альфа-частицами. В опытах по рассеянию на протонах электронов и гамма-квантов были получены доказательства существования внутренней структуры у этой частицы. В 1970 г. в Стенфордском центре линейного ускорителя удалось в эксперименте получить прямое свидетельство того, что протон действительно обладает внутренней структурой [1]. Однако, до сих пор отсутствует понимание, на каких принципах строится механизм формирования структуры протона. Из-за этого у протона остается много нераскрытых тайн. Непонятно его происхождение, неизвестна причина его стабильности. Не находит объяснение природа его массы, равная 1836,1526675(39) электронным массам. Из всех тяжелых частиц протон является единственной стабильной частицей. Эта частица является основой всех сложных вещественных образований Вселенной. Мир своим существованием обязан протону. Есть все основания полагать, что раскрытие его внутренней структуры откроет доступ к новым способам получения энергии. Освоение энергии протона может стать важнейшим фактором в решении энергетической проблемы.

Теория внутренней структуры протона изложена в [6, 8, 10], где показано, что структура протона представляет собой фрактальную конструкцию. Фрактал, выявленный в струтуре протона, отражает детерминированный процесс его образования. Открытие фрактальной закономерности образования протона, позволило получить важные характеристики элементарных частиц расчетным путем. В [6, 8, 10] определены фрактальные структуры различных элементарных частиц и найдено математическое описание фрактала протона.

Этапы и закономерность формирования структуры протона приведены на рис. 2. Формирование полной структуры протона происходит за десять шагов структурообразования, что представлено «фрактальным треугольником» [10].

P1 = 1+1

P2 = (2+1)

P3 = 2(2+1)+1

P4 = 2(2(2+1)+1)+1

P5 = 2(2(2(2+1)+1)+1)+1

P6 = 2(2(2(2(2+1)+1)+1)+1)+1

P7 = 2(2(2(2(2(2+1)+1)+1)+1)+1)+1

P8 = 2(2(2(2(2(2(2+1)+1)+1)+1)+1)+1)+1

P9 = 2(2(2(2(2(2(2(2+1)+1)+1)+1)+1)+1)+1)+1

P10 = 2(2(2(2(2(2(2(2(2+1)+1)+1)+1)+1)+1)+1)+1)+1

P11 = 2(2(2(2(2(2(2(2(2(2+1)+1)+1)+1)+1)+1)+1)+1)+1)+1

Рис. 2. Десять этапов формирования структуры протона.

На рис. 2 Рn – количество ветвей фрактала, адекватных зарядово-сопряженным вещественным образованиям. Фрактал протона имеет перекрывающиеся самоподобные структуры различного масштаба. Общая структура представляет собой переплетающийся узор, где завершающий фрагмент субструктуры низшего порядка является одновременно началом субструктуры более высокого порядка (рис. 3). Невозможно отделить или изъять из общей структуры повторяющуюся самоподобную субструктуру, не разрушая при этом весь переплетающийся узор (рис. 3). Протон имеет 10 самоподобных внутренних субструктур, повторяющих в масштабе первичную ячейку фрактала.