Смекни!
smekni.com

Цивилизация богов. Прогноз развития науки и техники в 21-м столетии (стр. 11 из 14)

Для практического использования промышленность начала выпускать микропроцессоры ограниченных некритических объемов, которые не являлись достаточно сложными, чтобы способствовать самопроизвольному зарождению искусственного интеллекта. Задача выпуска качественных микропроцессоров была нелегкой, поскольку требовала при сборке «компьютерного» вещества одновременно со сборкой элементной базы формирования соединений между элементами, подобных соединениям между нейронами человеческого мозга. К тому же на объемные микропроцессоры накладывались дополнительные ограничения, обусловленные требованиями теплопроводности, теплопередачи, прочности, помехозащищенности, которые необходимо было учитывать при разработке индивидуальных технологий молекулярной сборки. Тем не менее, задача производства мощных микропроцессоров методами молекулярной сборки была успешно решена, и к концу десятилетия достижения в области наноэлектроники воплотились в персональных компьютерах, имеющих мощность сравнимую с человеческим мозгом, способных выполнить 20000 триллионов операций в секунду.

Еще одной областью применения нанотехнологий стало производство сверхчистых химических элементов. Потребность в них постоянно росла, техника требовала все новых материалов с характеристиками, максимально приближенными к теоретическим свойствам вещества. Все существующие резервы традиционных технологий для улучшения свойств материалов были использованы, и едва ли не единственной возможностью дальнейшего их улучшения оставалось использование чистых беспримесных химических элементов. Именно получение чистых беспримесных веществ являлось одной из приоритетных и основных задач нанотехнологий, поскольку другими способами полностью избавиться от нежелательных примесей было невозможно даже теоретически. Идеально чистые химические элементы и вещества требовались также для целей генной инженерии, фармацевтики, при синтезе сложных химических соединений с заданными свойствами.

В ближайшей перспективе при помощи нанотехнологий планировалось производить каталитические матрицы повышенной сложности, с появлением которых ожидался прорыв в технологиях синтеза сложных химических соединений. Каталитические матрицы повышенной сложности являлись мини-фабриками, производящими конечный продукт путем последовательного осуществления каталитических реакций при минимальных энергетических затратах.

На общем фоне сложных задач, возлагаемых на технологии молекулярной сборки, несколько в стороне осталась сборка конструкционных материалов из неорганических соединений. Потребность промышленности в подобных материалах была очень большой и требовала налаженного крупнотоннажного производства. Это требование наложило свой отпечаток на технологические решения, реализуемые в технологиях молекулярной сборки конструкционных материалов в больших объемах. На многих предприятиях в различных отраслях промышленности были построены автоматические линии большой производительности, производящие материалы и готовые детали, которые обладали свойствами близкими к теоретически возможным свойствам. Множество технологий молекулярной сборки, основанных на избирательном выделении элементов из растворов и газовых смесей, обменных химических реакциях, физических эффектах, применялись для изготовления особо важных деталей в авиастроении, космостроении, автомобилестроении, станкостроении и других отраслях.

Параллельно быстрыми темпами развивалась каталитическая химия, также использующая методы молекулярного воздействия, берущие свое начало от катализаторов-прототипов естественного происхождения. Катализаторы заняли подобающее им достойное место в химическом производстве. С их помощью удалось на порядок снизить энергетические потребности химии по сравнению с началом века и примерно в сто раз уменьшить загрязняющие окружающую среду выбросы. Правда, эти цифры были усредненными. Не все производства в мире соответствовали уровню последних научных достижений и технологических решений. Множество стран третьего мира вынуждены были содержать и дотировать неконкурентоспособные химические производства исходя из экономических и политических соображений, чтобы обеспечить занятость среди населения, и сохранить существующий экономический уклад.

Совершенствование катализаторов происходило без оглядки на социальные и политические проблемы некоторых государств, согласно законам развития сложных технических систем. На практике уже использовались разнообразные несложные катализаторы, способствующие оптимальному прохождению той или иной конкретной химической реакции. Было разработано также несколько десятков более сложных катализаторов, позволяющих реализовать последовательно две и более химических реакций. Усилия ученых и технологов были направлены на получение эволюционирующих катализаторов. Такие катализаторы предназначались для производства сложных химических соединений в технологических пространствах малых объемов. В процессе функционирования, в зависимости от условий среды они предсказуемо изменяли свои каталитические свойства, причем этим процессом можно было управлять.

Влияние общественного мнения на решение экологических проблем было весьма значительным. Любые новации в области улучшения земной экологии находились под пристальным вниманием общественности. Появление новых технологий позволило приступить к созданию безотходных производств. Концепция безотходного производства базировалась на идее, согласно которой любые промышленные отходы есть не что иное, как сырье для производства полезных материалов и веществ. В рамках этой концепции было построено несколько безотходных химических производств, имеющих замкнутый цикл и не загрязняющих окружающую среду. Главную роль в реализации концепции безотходного производства сыграли катализаторы последовательного действия, которые являлись новейшими разработками. Это были сложные химические соединения, имеющие несколько каталитических центров, каждый из которых активировался при установлении определенных параметров рабочей среды. Эти новейшие инструменты нанотехнологий можно было назвать молекулярными роботами, выполняющими запрограммированные функции. В отличие от компьютерных программ, разработанных человеком с нуля, катализаторы последовательного действия реализовывали готовые программы, отобранные из множества потенциальных программ, созданных самой Природой. Проектирование катализаторов последовательного действия являлось трудоемким занятием, поскольку требовало учета изменений молекулярной структуры катализатора в зависимости от параметров рабочей среды. Несмотря на огромную вычислительную мощность компьютерной сети, успехи в этом направлении были единичными. Однако это было приоритетное направление, поскольку оно способствовало уменьшению вредного влияния цивилизации на окружающую среду. В ближайшее время совершенствование катализаторов последовательного действия обещало привести к технологическому прорыву во многих отраслях производства.

Это было время реализации еще одной экологической концепции – повсеместного применения саморазрушающихся после выполнения своих функций материалов. Работа любых промышленных предприятий, согласно представлениям этой концепции, не должна была приводить к накоплению долговременных отходов. Для выполнения этого требования необходимо было создать условия для саморазрушения отходов и их разложения на простые составляющие. На практике процесс саморазрушения отходов производства невозможно было реализовать со стопроцентным эффектом, но даже первые несовершенные технологии способствовали уменьшению количества свалок промышленных отходов, и препятствовали образованию новых. Некоторые технологии изготовления саморазрушающихся материалов были разработаны ранее, однако их применение требовало значительных денежных вложений в модернизацию производства, что не всегда могло быть осуществлено. Кроме этого свою негативную роль сыграло мнение многих специалистов, считающих, что превращать отработанные материалы в простые соединения все равно, что бросать деньги на ветер. Гораздо эффективнее появляющиеся отходы собирать и перерабатывать. Однако такие специалисты предлагали бороться с последствиями, а не с причинами загрязнения окружающей среды. Причинами являлось массовое производство материалов чуждых земной биосфере, и непредсказуемое поведение человека при выполнении им задач по сбору бытовых и промышленных отходов. К сожалению, общий культурный уровень человечества был все еще низок, что препятствовало реализации многих проектов, требующих сознательного и скрупулезного исполнения, в частности проектов по сбору и переработке различных отходов в планетарном масштабе. Ликвидация долговременных накоплений отходов в принципе решала проблему загрязнения окружающей среды и не требовала присутствия человеческого фактора.

В последние годы в области производства саморазрушающихся материалов заработали экономические законы, понятные всем. Уменьшение себестоимости производимой химической продукции и внедрение новейших технологий синтеза химических соединений, позволили поставить производство саморазрушающихся материалов на крепкий фундамент финансовой прибыли. Основную долю производимой продукции составляла саморазрушающаяся тара и упаковка, в первую очередь по причине повсеместного и массового ее применения. Наряду с этим предпринимались попытки оптимизировать состав и структуру отходов целого ряда производств, с целью сделать их способными к быстрому разрушению в естественных природных условиях. Это были попытки подхода к решению проблемы с неожиданной, противоречащей логике, стороны, попытки идти от следствия к причине, от разработки универсального набора саморазрушающихся отходов к изменению технологий, продуцирующих эти отходы. Необходимо заметить, что попытки эти обгоняли время, и носили во многом академический и волевой характер.