Смекни!
smekni.com

Цивилизация богов. Прогноз развития науки и техники в 21-м столетии (стр. 6 из 11)

Сложные, комбинированные и редкие случаи раковых заболеваний требовали индивидуального подхода к лечению. Как правило, для этого методами генной инженерии создавались индивидуальные антитела, способные связываться с редкими формами злокачественных клеток. Подобные антитела зачастую могли присоединяться к нескольким типам раковых клеток, то есть являлись универсальным средством. К концу десятилетия лечение большинства форм рака стало реальностью, однако, каждый конкретный случай требовал учета индивидуальных факторов. В некоторых случаях стоимость излечения была чрезвычайно высока, однако средства, как правило, находились, поскольку любое продвижение вперед обогащало медицину новыми знаниями и давало возможность последующие проблемы решать эффективнее и быстрее.

Иммунные комплексы, способные избирательно воздействовать на клетки-мишени, стали самыми популярными лекарственными препаратами в мире. Целая индустрия, родившаяся на стыке фармакологии и генетики, исправно поставляла на мировой рынок тысячи разновидностей моноклональных антител и тысячи разновидностей наполненных лекарственными веществами капсул, в качестве которых использовались давно известные липосомы. Конструирование иммунных комплексов при лечении заболеваний происходило с учетом индивидуальных особенностей конкретного организма. В сжатые сроки были сконструированы и испытаны несколько сотен иммунных комплексов универсального назначения, которые использовались как для лечения заболеваний, так и для их профилактики, а также в косметических целях. Иммунные комплексы универсального назначения осуществляли целевую доставку лекарственных и биологически активных соединений к клеточным мишеням. Наполненные лекарственными веществами липосомы присоединялись к мембране клеток, имеющих фосфолипидное строение, после чего содержимое липосомы высвобождалось и частично попадало внутрь клетки, а частично оставалось на ее поверхности. И тот, и другой процесс были одинаково полезны для нормализации клеточной деятельности. Выбор соотношения между количеством лекарственного препарата, прошедшего через клеточную мембрану и оставшегося на поверхности клетки определялся размерами самой липосомы. Так липосомы малых размеров осуществляли доставку своего содержимого непосредственно внутрь клетки и несли в себе препараты внутриклеточного действия. Липосомы более крупных размеров доставляли содержащиеся в них вещества на поверхность клеточных мембран, воздействуя на ткани и органы, и применялись чаще всего в косметических целях. Значительную часть мирового потребления иммунных комплексов занимали профилактические цели. Те знания о функционировании клеток, которые уже были получены наукой, позволяли давать успешные рекомендации относительно потребности тех или иных клеток и тканей в определенных веществах с учетом возраста, пола, времени года и других факторов. Плановое использование иммунных комплексов позволяло удовлетворять потребности организма человека в полной мере и зачастую превентивно.

Полнее и совершеннее за последние годы стала компьютерная модель эталонного генома человека. Расшифровка нескольких тысяч индивидуальных геномов представителей различных рас, народностей, возрастов, и т.д. дала необходимый качественный материал, который способствовал изложению эталонного генома человека в виде общедоступной компьютерной модели. И хотя механизмы реализации функций многих генов оставались до сих пор еще невыясненными, все же было определено, что большинство таких генов являются ответственными за процессы метаболизма, или другими словами за реализацию внутриклеточных реакций. Такие реакции являлись одинаковыми для всех представителей вида Homo Sapiens, за редчайшими исключениями, поиск которых являлся интересным и перспективным направлением в генетике. Небольшое упрощение модели эталонного генома человека, основанное на допущении, что гены, отвечающие за процессы метаболизма в организме любого человека, являются одинаковыми для всех людей, позволило создать вполне достоверную модель эталонного генома. Эта модель имела некоторый архитектурный уклон и достоверно показывала пути реализации морфологических признаков человека, изображенных схемами «ген (группа генов) – белок – признак». Появление такой модели позволило придать генетике наглядность и зрелищность. Если добавить к этому возможность интерактивной работы с компьютерной моделью в режиме реального времени, то трудно было недооценить, насколько серьезный инструмент появился в руках ученых. Появление такого инструмента дало также очень много в плане привлечения финансовых средств и талантливых людей в генетику и смежные науки.

Миллионы интересующихся людей, не специалистов, получили доступ к интерактивной модели эталонного генома человека, вернее к ее игровой общедоступной версии. Теперь любой желающий мог удовлетворить собственное любопытство и поэкспериментировать с генами человека. На пользовательском уровне многие люди, комбинируя из набора архитектурных генов, конструировали тела, лица и организмы для своего виртуального потомства, реализуя собственные предпочтения. Произошел всплеск интереса со стороны общества к строению человеческого организма и возможностям улучшения человека за счет применения эталонных генов. На какое-то время самым популярным занятием среди взрослых и детей стали компьютерные игры с обобщенным названием «Сконструируй человека».

Специалисты же работали с компьютерной моделью эталонного генома человека скрупулезно и с воодушевлением. Они ежечасно уточняли многочисленные взаимосвязи типа «ген – белок – признак», которые были положены в основу компьютерной модели. Однако не менее важным являлось достоверное отражение в модели тех сложных взаимосвязей между генами, белками и признаками, которые существовали в скрытой, неявной форме. Поскольку подобных взаимосвязей существовало астрономическое количество, а число ученых работающих в этой области науки составляло десятки миллионов, то поступление новой полезной информации и совершенствование модели эталонного генома человека происходило безостановочно. С ростом числа отображенных взаимосвязей в компьютерной модели увеличивались потенциальное многообразие морфологических признаков и сложность модели. Совершенная модель должна была учитывать не только взаимосвязи внутри генома, но и влияние на процессы реализации наследственной информации концентраций химических соединений, температуры, освещенности, величины электрического и магнитного полей и т.п.

Примерно этим же временем датируется появление первых компьютерных моделей эталонных геномов некоторых замечательных животных, в основном насекомых и обитателей моря. Расшифровка их геномов началась достаточно давно и была направлена в основном на получение информации о специализированных функциях и признаках, которые могли быть использованы в интересах человека. Работа с существующими моделями генома некоторых замечательных животных и возможность быстрого уточнения моделей привели к накоплению качественной информации о реализации функций большинства генов и их групп. Этой информации было достаточно для создания моделей эталонных геномов исследуемых животных. За эталон в подобных моделях принималась комбинация генов, приводящая к наилучшей реализации замечательного признака либо функции. Так был исследован геном некоторых насекомых, показывающих выдающуюся стойкость в условиях радиационного облучения, на предмет понимания механизмов внутриклеточного «ремонта» и регенерации тканей. Помимо этого были расшифрованы геномы некоторых морских организмов, чувствующих себя комфортно при отрицательной температуре окружающей среды, а также в условиях повышенной температуры и высокого давления. Целью подобных исследований было определение набора метаболических реакций, позволяющих искусственному организму функционировать в экстремальных условиях, смертельных для большинства земных организмов.

Подобные исследования были крайне важны для оценки механизмов жизнеобеспечения человеческого организма, которые были запрограммированы в геноме человека и проявлялись через устойчивые метаболические реакции. В земной биосфере не существовало большого разнообразия механизмов реализации одних и тех же признаков (функций) у различных организмов, как и разнообразия комбинаций генов, кодирующих эти механизмы. Эволюция остановилась на достаточности тех или иных механизмов реализации признака для каждого организма применительно к среде его обитания, не совершенствуя эти механизмы более необходимого. Чем агрессивнее и враждебней было природное окружение какого-либо биологического вида, тем более специализированные функции ему приходилось выполнять для выживания, и тем выше предъявлялись требования к механизмам реализации необходимых признаков, тем выше находилась планка достаточности признака.

Понимание специализированных эволюционных наработок Природы позволило ученым сравнить механизмы реализации признаков (функций) у различных биологических видов и у человека, получить тем самым ценный материал для будущего улучшения человеческого генома. С точки зрения большей части земного общества, расширение возможностей человека за счет использования эволюционных наработок Природы являлось допустимым и возможным. По мере дальнейшего исследования земных организмов тщательно изучались и отбирались лучшие механизмы реализации признаков (функций), которые могли быть с успехом использованы для конструирования более совершенного организма, чем существующий человеческий организм.