Совершенствовались нанотехнологии создания материалов с заданными свойствами. Подобные материалы были предназначены для применения в различных отраслях мирового хозяйства. Изначально технологии молекулярной сборки материалов были ориентированы на потребности электронной промышленности, где требовалась особая чистота применяемых материалов, высокая точность взаимного расположения составляющих элементов и сверхточная дозировка вносимых примесей. Подобные требования ставились перед электронной промышленностью прежде и выполнялись известными физическими и химическими способами. Уменьшение количества вносимых примесей до нескольких атомов, переход к производству трехмерных микросхем, колоссальное уменьшение размеров всех активных элементов, повышенные требования к надежности привели к появлению новых технологических решений. При производстве объемных микросхем каждого типа стал применяться индивидуальный набор каталитических и абсорбционных матриц, которые последовательно осуществляли формирование объемной структуры микросхемы, присоединяя необходимые молекулы и атомы к основе микросхемы. Питательной средой, если уместно в данном случае применить биологический термин, несущей в себе необходимые элементы являлись особо чистые растворы и газовые смеси.
Технологии каталитических и абсорбционных матриц базировались на принципах избирательного выделения из растворов и газовых смесей необходимых химических соединений и избирательного присоединении этих химических соединений к определенным молекулам строящегося объекта. С успехом использовались и обратные принципы – избирательного отъема атомов и молекул из строящегося объекта. В общем случае, нанотехнологии разбудили фантазию ученых и техников многих специальностей, и это привело к появлению множества удачных технологических решений. Новые технологии постепенно приближались к природным технологиям строительства элементов биологических систем. Поэтому в ходе многочисленных исследований, направленных на совершенствование нанотехнологий, зачастую использовались биологические объекты, такие как антитела, ферменты, природные и искусственные катализаторы, а также их комбинации с неорганическими соединениями.
Как всегда, массированная атака очередной проблемы профессионалами разных специальностей привела к положительным результатам. Методами молекулярной сборки вещества были получены качественные объемные микросхемы. Первые успешно работающие образцы многослойных микросхем сделали реальной перспективу производства микросхем неограниченных размеров (на практике пока существовали технологические ограничения). Иными словами в ближайшем будущем ожидалось массовое производство «компьютерного» вещества, на основе которого можно будет изготавливать процессоры требуемой мощности. Как тут не вспомнить о сером веществе человеческого мозга. Таким образом, производство объемных микросхем методами молекулярной сборки открыло новую эру производства сложно структурированных материалов с заданными свойствами.
Технологические решения, используемые при производстве объемных микросхем, а именно применение каталитических и абсорбционных матриц для создания материалов с заданными свойствами, начали широко применяться в различных отраслях промышленности. Сам термин «материалы с заданными свойствами» был довольно емким по своему содержанию. Он включал в себя как особо чистые химические элементы и соединения, так и материалы со сложной структурой, полученные на их основе. Этим термином определялись также и функциональные органические ткани, производство которых методами молекулярной сборки являлось делом ближайших десятилетий. Различные комбинации требований к материалам с заданными свойствами, определяли сложность их трехмерной структуры, химический состав, чистоту используемых химических элементов и соединений, а также технологические нюансы. На фоне множества подобных задач производство «компьютерного» вещества не являлось особо сложной задачей, как не являлось и чрезмерно легкой. При производстве целого ряда материалов с заданными свойствами использовались более сложные технологии, чем при производстве «компьютерного» вещества. И напротив некоторые материалы с заданными свойствами, например, ряд конструкционных материалов, могли быть получены быстро и в промышленных масштабах.
Самое пристальное внимание было обращено учеными и технологами на улучшение и разработку новых керамических материалов. Перспективным являлось как получение чистых керамических порошков для последующего спекания, так и производство готовых деталей и заготовок. Интерес к керамике был обусловлен большим разнообразием керамических материалов (металлокерамика, стеклокерамика, полимерная керамика и т.п.), широким диапазоном их химико-физических свойств, и соответственно широкой областью применения. Одним из основных направлений являлось производство керамических проводников, обладающих эффектом сверхпроводимости при комнатной температуре. Получить такие свойства можно было за счет упорядочения внутренней структуры керамических материалов, введения дополнительных расчетных химических соединений, обеспечения особой чистоты компонентов и т.п. Вторым направлением являлось производство керамик с заданными свойствами для применения в качестве конструкционных материалов в машиностроении, авиации, космическом машиностроении, военном деле. Для этих отраслей промышленности требовался большой спектр керамических материалов, обладающих различными сочетаниями физико-механических свойств. К числу таких свойств относились предельная жаропрочность, износостойкость, химическая инертность, твердость, пластичность, долговечность и многие другие. Еще одним важным потребителем, нуждающимся в специализированных керамиках, являлась медицина. Именно для потребностей здравоохранения необходимы были долговечные и биологически инертные материалы для имплантации, заменители зубов и костей, а также конструкционные материалы для искусственных органов, совместимые с механическими и кибернетическими устройствами.
С особым пристрастием, которое объяснялось угрозой исчерпания не возобновляемых энергоресурсов, учеными многих стран разрабатывались способы промышленного получения молекулярного водорода. Наиболее перспективным казался подход, реализуемый в природе как первая стадия фотосинтеза, то есть разложение молекул воды под действием солнечной даровой энергии. Весьма многообещающим на этом пути являлось создание искусственных катализаторов, способных расщеплять молекулы воды, используя энергию окружающей среды. К концу десятилетия исследования ознаменовались первыми значительными успехами. Изучение механизмов природных фотокаталитических реакций, более известных нам как реакции фотосинтеза, способствовало созданию десятка различных по строению фотосенсибилизаторов – веществ повторяющих первую стадию фотосинтеза, а именно осуществляющих разложение воды на молекулярный водород и кислород. Применение в лабораторных установках некоторых из них позволило осуществить фотокаталитическое разложение воды в условиях естественного дневного освещения. Отдельные образцы фотосенсибилизаторов имели высокую стойкость и не требовали обновления в течение двух-трех недель. Коэффициент полезного действия искусственных фотокаталитических систем разложения воды, посчитанный как отношение теплоты сгорания полученного водорода к величине использованной солнечной энергии, в отдельных случаях достигал пятнадцати процентов, что являлось очень высоким результатом, и позволяло перейти к промышленному получению молекулярного водорода.
Интенсивно осуществлялась разработка улучшенных фотокатализаторов, воплощающая в натуральном виде результаты компьютерного моделирования и конструирования. Построенные на расчетных принципах, эти химические соединения осуществляли разложение воды на основе не существующих в природе фотохимических реакций. Создание эффективных искусственных фотокатализаторов для производства водорода из воды требовало множества сложных вычислений, и являлось достаточно трудоемким делом. В конце десятилетия произошел качественный скачок в технологиях компьютерного конструирования, что привело к созданию целого семейства эффективных фотокатализаторов. Искусственные химические соединения представляли собой сложные молекулы с развитой пространственной структурой, которые максимально эффективно осуществляли отрыв атома водорода от молекулы воды. Эффект отрыва основывался на создании вокруг атома водорода локального пространства с расчетным распределением электронной плотности и на использовании энергии фотонов. Новые фотокатализаторы имели коэффициент полезного действия всего несколько процентов, что было явно недостаточно, однако они имели и существенные достоинства, такие как инертность к большинству химических соединений, долговечность, возможность использования энергии низкоэнергетических фотонов (красного света). Дальнейшее совершенствование таких фотокатализаторов имело хорошие перспективы для производства промышленных количеств водорода в холодное время года, а также в утренние и вечерние часы, когда солнечный свет теряет свою интенсивность и высокоэнергетическую составляющую.
В результате научных и технических достижений последних лет сырьевая база мировой энергетики начала менять свою структуру и смещаться в сторону использования молекулярного водорода. Фотокаталитический способ получения молекулярного водорода из воды имел кроме известного экологического преимущества (продуктом горения водорода в кислороде является вода) еще один важный положительный аспект. При использовании свежеполученного водородного горючего солнечная энергия, запасенная в молекулах водорода, аккумулировалась и выделялась в окружающую среду в реальном времени. Напротив использование таких энергоресурсов как газ, нефть, уголь, торф приводило к выделению в окружающую среду тепловой энергии, аккумулированной миллионы лет назад, что нарушало сложившийся тепловой баланс планеты. Таким образом, массовое использование водорода в энергетике исключало дополнительный нагрев окружающей среды, как это было в случае использования природных энергоносителей, и приводило лишь к незначительному перераспределению солнечной энергии в пространстве и времени.