Существуют странные аттракторы, когда траектории системы совершают произвольные и не поддающиеся регулярному описанию блуждания внутри определенной области. Следуя Пригожину, странный аттрактор можно назвать “привлекающим хаосом” . Чтобы представить себе нагляднее картину химических часов, а ее необычность выразить более впечатляющим образом, Пригожин и Стенгерс предлагают условно считать, что в реакции участвуют молекулы двух сортов — “красные” и “синие” . До перехода критического порога концентрации “управляющего” вещества они находятся в хаотической смеси, и мы имеем в пробирке какую-то фиолетовую жидкость с легкими беспорядочными отклонениями в один из двух первоначальных цветов. “Иную картину мы увидим, разглядывая химические часы: вся реакционная смесь будет иметь синий цвет, затем ее цвет резко изменится на красный, потом снова на синий и т.д. Поскольку смена окраски происходит через правильные интервалы времени, мы имеем дело с когерентным процессом. Столь высокая упорядоченность, основанная на согласованном поведении миллиардов молекул, кажется неправдоподобной, и если бы химические часы нельзя было бы наблюдать „во плоти” , вряд ли кто-нибудь поверил, что такой процесс возможен. Для того чтобы одновременно изменить свой цвет, молекулы должны „каким-то образом” поддерживать связь между собой. Система должна вести себя как единое целое”[3]. Налицо эффект когерентного, кооперативного поведения элементов в химических системах. В теории самоорганизации проводится четкое различие между стационарными, “застывшими” структурами, такими, как решетки кристаллов, и относительно устойчивыми структурами, вызываемыми к жизни из первоначально хаотического состояния путем интенсивного изменения по некоторому ведущему параметру — будь то накачкой энергии в физическом эффекте лазерного излучения, увеличением концентрации вещества в описанном выше химическом эффекте или, с самой общей точки зрения, притоком информации в среду, что также охватывается синергетическими моделями. Первый тип структур — это, можно сказать, тупики эволюции. Для равновесных стационарных структур малое возмущение “сваливается” на ту же самую структуру. Второй тип — это структуры, способные самопроизвольно возникать и развиваться в активных, рассеивающих (диссипативных) средах в состояниях, далеких от термодинамического равновесия. Для обозначения такого типа структур Пригожин предложил использовать понятие диссипативной структуры. Именно они в фокусе внимания синергетики.
Диссипативные структуры проявляют характерное свойство: в состояниях неустойчивости они могут оказаться чувствительными к малейшим случайным отклонениям в среде. Краткий момент неустойчивости, балансирования системы на острие выбора между будущими состояниями, когда судьба всей системы может зависеть от вторжения одной случайной флуктуации, называется в синергетике бифуркацией. Исследования явлений самоорганизации в химических процессах привели Пригожина к созданию собственной обобщенной теории самоорганизации, далеко выходящей за пределы химии. Он называет ее по- разному: нелинейной неравновесной термодинамикой, наукой о сложном, теорией перехода от хаоса к порядку, но чаще всего теорией диссипативных структур.
Пригожин предпочитает не пользоваться термином “синергетика” , хотя по своему внутреннему содержанию его исследования, бесспорно, относятся к синергетической теории эволюции и самоорганизации сложных систем.
Но создание теории самоорганизации для Пригожина — еще не самоцель. Его сверхзадача — использовать данную теорию для раскрытия глубинных механизмов происхождения живого. Он стремится преодолеть качественный разрыв между описанием живой и неживой природы или по меньшей мере — что лежит в пределах возможностей современной науки — добавить еще несколько пролетов к тому мосту, который ученые издавна пытаются навести над пропастью, лежащей между ними.
“Жизнь, заведомо укладывающаяся в рамки естественного порядка, предстает перед нами как высшее проявление происходящих в природе процессов самоорганизации. Мы... утверждаем, что, коль скоро условия для самоорганизации выполнены, жизнь становится столь же предсказуемой, как неустойчивость Бенара или падение свободно брошенного камня” [4], — пишут Пригожин и Стенгерс.
В поисках связующих звеньев между живым и неживым Пригожин опирается на данные молекулярной биологии, находящейся как бы посередине реки, разделяющей два берега. Он высоко оценивает модель предбиологической эволюции, разработанную немецким ученым Манфредом Эйгеном. Согласно исследованиям Эйгена, системы полимерных молекул — молекул, которые, взятые сами по себе, лишены в традиционном представлении и “капли” жизни, — способны поддерживать собственное существование через цикл самовоспроизводства и противодействия возмущающим влияниям извне. Механизм их самосохранения и адаптации к окружающей среде является прообразом механизма воспроизводства живых организмов через цепи ДНК.
Пригожин говорит о спонтанных островках самоорганизации при переходе к живому: “По-видимому, разумно предположить, что некоторые из первых стадий эволюции к жизни были связаны с возникновением механизмов, способных поглощать и трансформировать химическую энергию, как бы выталкивая систему в сильно неравновесные условия. На этой стадии жизнь, или „преджизнь” , была редким событием и дарвиновский отбор не играл такой существенной роли, как на более поздних стадиях” [5]. Взгляд на природу как на единое целое, где деление на живое и неживое не является абсолютным, но связано с ограниченностью нашего понимания вещей, можно проследить далеко вглубь истории человеческой мысли. Более характерен он для восточной философии, но имел влияние и на Западе. В числе приверженцев такого взгляда и, в сущности, отдаленных предшественников синергетического мировоззрения стоит упомянуть Шеллинга, который строил свою философию исходя из представления о природе как о едином живом организме. “Неорганическая и органическая природа связаны одним и тем же началом” [6], — писал он, усматривая такое начало в феноменах “организации” и спонтанного творческого акта. Что же нового вносит тогда синергетика? Ее новшество и ее шаг вперед по отношению к предшествующим представлениям о единых началах живого и неживого заключаются в междисциплинарном научном и обобщенно- теоретическом изучении тех закономерностей, которые составляют универсальную основу процессов самоорганизации и эволюции сложного, и в постоянном подкреплении своих теоретических представлений многочисленными опытными данными базовых научных дисциплин.
В античные времена наука, искусство и философия находились в неразрывном единстве и гармонии, а в самой науке дисциплинарные деления были едва намечены. Но в Новое время наука распалась на автаркические владения, каждое из которых вырезало из тела природы собственный фрагмент, скрупулезно разбирало его по клеточкам и пыталось понять принцип его деятельности исходя только из него самого. Неудивительно, что в последующую эпоху, особенно со второй половины ХХ века, усилилось встречное стремление: понять мир в его целостности, усмотреть в искусственно рассеченных сферах нечто существенно общее и как к естественному итогу прийти к объединению наук, созданию единой науки о единой природе. Объединение наук при этом, конечно, понималось не как непродуктивное механическое слияние, а как вычленение в них некоторого общего содержательного ядра и стыковка наук в качестве лишь условно поделенных участков единого исследовательского поля.
Синергетика в наиболее последовательной форме отвечает на этот вызов времени. Она говорит о возможных способах объединения естественных и ряда гуманитарных наук — с сохранением, разумеется, их собственной идентичности и предметной специфики, а также о перспективах кросс-дисциплинарной коммуникации, творческого диалога специалистов в различных областях. Объединение возможно вокруг изучения основополагающего феномена — феномена самоорганизации. Вероятно, объединение наук осуществимо не во всей их целостности, а лишь в определенном аспекте — изучении сложных образований (систем) на различных уровнях реальности, механизмов их эволюции и самоорганизации.
Оппозиция “живое — неживое” мыслится при этом как главный, но не единственный камень преткновения из числа тех, что лежит на пути объединения. Столь же важной представляется задача объединить в едином исследовательском фокусе микро- и макромиры, мир индивидуальной психологии и поведения и мир массовых общественных процессов, наконец, мир науки с тем, что можно назвать жизненным миром человека, миром человеческой экзистенции. Синергетика призвана не только вернуть науке целостного человека, но и науку вернуть человеку, поставить ее лицом к его реальным проблемам и заботам. К сущности синергетики относится универсальный характер раскрываемых ею закономерностей, а значит, по необходимости междисциплинарный характер проводимых в ее рамках исследований. На первое место она ставит общность процессов эволюции и самоорганизации, имеющих место в физических, химических, биологических, социальных и иных системах. Указание же на специфику, несхожесть этих систем рассматривается скорее в качестве уточняющей, корректирующей поправки, выносится за скобки. При этом задача синергетики — не просто уловить внешние аналогии, а установить внутренние изоморфизмы поведения таких систем. Синергетика равным образом предполагает как восхождение от конкретных экспериментальных данных к теоретическим и междисциплинарным обобщениям, так и обратный процесс — прикладное использование теоретических представлений и разработанных моделей в различных дисциплинах и сферах практической деятельности.
Соответственно в синергетике можно выделить два направления — синергетику теоретическую и прикладную, хотя такое членение весьма условно. Ученые, работающие над какими-либо конкретными задачами в своей области, часто предлагают синергетическому сообществу свежие идеи и гипотезы общего порядка, родившиеся в ходе решения таких задач.