Смекни!
smekni.com

Самолётные связные радиостанции (стр. 2 из 3)

Для получения сигнала с ОМ достаточно сохранить одну из боковых полос, подавляя другую. Это выполнить проще, чем в случае AM, так как разнос самых низких частот боковых полос вдвое превышает разнос наименьшей частоты модуляции и несущего колебания.

Формирование сигнала с ОМ производят на сравнительно низкой поднесущей частоте, осуществляя затем преобразование полученного спектра в область высоких частот путем гетеродинирования. Процесс трансформации спектров колебаний при однополосной модуляции в передатчике показан на рис. 6, а, штриховыми линиями показаны частотные характеристики фильтров верхних частот.

Рис. 6. Спектры ОМ-сигналов и их преобразование в передатчике и приемнике: ωп,ωг,ωпер— частоты поднесущего, гетеродинного и излучаемого колебаний

Процесс преобразования спектра сигнала с ОМ в приемнике представлен на рис. 6 ,б. Здесь процессы воспроизводятся в обратной последовательности по сравнению с процессами в передатчике. Важно подчеркнуть, что, для воспроизведения исходного сообщения в приемнике спектр принятого колебания необходимо дополнить колебанием несущей частоты. Это дополнение производится на частоте поднесущих колебаний.

Функциональная схема основных элементов тракта ОМ передатчика и приемника показана на рис. 7.

Рис. 7. Схема основных элементов трактов передатчика и приемника ОМ-сигналов

Речевое сообщение a(t) после усиления в УНЧ подводится к балансному модулятору БМ, к которому подаются также колебания поднесущей частоты fп от синтезатора частот СЧ, общего для передатчика и приемника. Фильтр верхней полосы ФВП подавляет нижнюю полосу боковых частот на выходе БМ. Верхняя боковая полоса подвергается преобразованию в ПЧ с помощью гетеродинных колебаний fг, также поступающих от СЧ. Сформированная полоса высокочастотных колебаний проходит полосовой фильтр ПФ, подавляющий паразитные продукты гетеродинирования, подвергается усилению в усилителе мощности УМ и излучается.

В приемнике Прм производится преобразование частоты принятых сигналов и детектирование, причем к детектору Д, кроме принятого сигнала, подводятся также колебания восстановленной несущей, роль которой выполняют колебания третьей промежуточной частоты; формируемые в СЧ. На выходе усилителя низкой частоты приемника воспроизводится исходное сообщение a(t).

6. Синтезаторы частоты:

Устройства прямого синтеза. В устройствах прямого синтеза реализуются методы деления, умножения и преобразования частоты, с помощью которых из исходных колебаний частоты одного кварцевого генератора формируется множество колебаний (сетка частот). Идею функционирования устройств прямого синтеза можно иллюстрировать рис. 8 Буквой fо обозначена частотная компонента, формируемая кварцевым генератором. Предполагается, что PC, кроме этого колебания, должна обеспечить формирование множества других высокостабильных колебаний, отстоящих друг от друга на интервал частот fс. Требуемый набор частот на оси абсцисс отображен дискретными компонентами, расположенными справа от fо через частотные интервалы fc.

Как формируется требуемое множество частот? Синтез требуемого множества колебаний, образующих сетку частот, осуществляется следующим образом. Вначале производится деление частоты fо и формируются колебания частоты fc. На оси частот это колебание показано компонентой fc, отстоящей от начала отсчета на интервал fc. Далее путем умножения формируются колебания частот 2fc, 3fc ..., nfc. Наконец, производя преобразование частоты, можно осуществить перенос сетки частот fc, 2fc, ..., nfc на интервал f0 и размещение ее справа от частоты f0. В итоге получаем требуемое множество частот

f0, f0+fc, f0+2fc, ..., f0+nfc.

Рис. 8. Схема формирования дискретной сетки частот при прямом синтезе

Таким образом, переход от частоты кварцевого генератора f0 к любому значению f0+ifc осуществляется изменением коэффициента умножения частоты в соответствующем элементе схемы синтезатора.

Устройства косвенного синтеза. Принцип функционирования устройств косвенного синтеза частот можно рассмотреть на примере синтезатора частот PC «Баклан» (рис. 9). Выходные колебания формируются схемой с помощью управляемого генератора УГ, диапазон перестройки которого при работе на передачу составляет 118,000... 135,975 МГц, а при работе на прием, когда синтезатор выполняет роль первого гетеродина,— 138,000... 155,975 МГц. Стабилизация частоты УГ осуществляется управляющим напряжением, получаемым с помощью импульсно-фазового детектора ИФД. Для формирования управляющего напряжения к ИФД подводятся с одной стороны колебания от кварцевого опорного генератора и с другой от ДПКД после деления частоты выходных колебаний УГ до значения 6,25 кГц, т. е. до частоты, равной частоте опорных колебаний, получаемых от кварцевого генератора. Управляющее напряжение на выходе ИФД равно нулю только при совпадении частот и фаз сигналов на его входе. При этих условиях частота УГ будет точно соответствовать номинальному значению, установленному на указателе настройки пульта дистанционного управления.

Рис. 9. Схема системы косвенного синтеза сетки частот

Если частота УГ отклоняется от номинального значения, то появляется сдвиг частоты на выходе ДПКД от 6,25 кГц и на выходе ИФД возникает управляющее напряжение, изменяющее частоту УГ, приводя ее к номинальному значению.

В цепи обратной связи между УГ и ИФД установлено два делителя частоты. Коэффициент деления первого из них постоянен и равен т = 8. Коэффициент деления второго ДЧ может изменяться под действием сигналов, поступающих с пульта дистанционного управления ПДУ, в пределах 2360...2719,5 с интервалом 0,5. Это позволяет обеспечить формирование с помощью УГ любой из частот в диапазоне 118... 135,975 МГц с дискретностью в 25 кГц.

Таким образом, схема косвенного синтеза обеспечивает кварцевую стабилизацию множества дискретных значений частот излучаемых колебаний с помощью одного кварцевого генератора.

Схема косвенного синтеза частот используется также в радиостанции «Ядро», где она дополняет схему прямого синтеза и позволяет расширить диапазон стабилизируемых значений частоты.

7. Особенности радиопередатчиков:

Необходимо отметить несколько особенностей передатчиков PC. Роль задающих генераторов в них обычно играют синтезаторы частоты. В передатчиках с AM применяются схемы автоматической регулировки глубины модуляции, а в передатчиках с ОМ — схемы автоматической регулировки мощности. В случае ОМ используется многократное преобразование частоты сигналов. Остановимся на некоторых из перечисленных особенностей.

Системы автоматической регулировки глубины модуляции (АРГМ) и системы автоматической регулировки мощности (АРМ) излучения предназначаются для стабилизации глубины модуляции излучаемых сигналов в случае AM или для стабилизации мощности сигнала боковой полосы в случае ОМ при изменениях громкости передаваемого телефонного сообщения в широких пределах. По принципу действия эта система подобна системе автоматической регулировки усиления (АРУ) в радиоприемнике: с ее помощью в зависимости от силы звука изменяется коэффициент усиления модулятора так, что изменения напряжения сигналов на выходе модулятора оказываются значительно меньше входных.

Система АРГМ часто дополняется ручной регулировкой коэффициента усиления усилителя низкой частоты модулятора. Выбирая надлежащим образом силу голоса и коэффициент усиления модуляционного каскада, оператор может добиться уменьшения влияния на качество передачи акустических помех.

В передатчиках с AM используются так называемые схемы задержки, представляющие собой системы автоматического регулирования уровня несущих колебаний. Уровень несущих колебаний с их помощью значительно уменьшается в тех случаях, когда отсутствует модулирующее напряжение в тракте низкой частоты. Благодаря этому возрастает КПД передатчика.

Применение схем преобразования частоты в передатчиках с ОМ обусловлено стремлением повысить качество фильтрации спектра боковых частот модуляции и подавления составляющих спектра второй боковой полосы. Качество фильтрации удается повысить, осуществляя модуляцию сигналов не на частоте излучаемых колебаний, а на более низкой частоте поднесущих колебаний.

Характерные особенности радиоприемников:

В бортовых PC используются приемники супергетеродинного типа. В диапазоне MB обычно осуществляется однократное преобразование частоты, в диапазоне ДКМВ — трехкратное. При трехкратном преобразовании достигается сужение полосы пропускания УПЧ до 3,2 кГц при ОМ и до 140 Гц при амплитудном телеграфировании.

В усилителях промежуточной частоты (УПЧ) применяют кварцевые и электромеханические фильтры, обладающие частотной характеристикой практически прямоугольной (П-образной) формы и позволяющие реализовать высокую избирательность по соседнему каналу. Использование преселекторов и надлежащий выбор первой промежуточной частоты позволяют обеспечить хорошую избирательность по зеркальному каналу.

Расстояния между передатчиком и приемником, а значит, и амплитуды входных сигналов могут изменяться в широких пределах, поэтому в состав приемников включаются эффективные системы АРУ. Ослабление влияния изменений коэффициента модуляции сигнала достигается с помощью систем автоматической регулировки громкости (АРГ), представляющих собой системы автоматического управления усилением сигнала по низкой частоте.

В авиационных радиоприемниках используются различные схемы подавителей шумов (ПШ), обеспечивающие запирание низкочастотного тракта при отсутствии полезного сигнала или при слишком низком его уровне. Принцип функционирования ПШ можно рассмотреть на примере PC «Ядро» (рис. 10). Кроме элементов схемы НШ, на рис. 10 показаны относящиеся к основному тракту радиоприема амплитудный детектор АД и УНЧ2. Сигналы с выхода амплитудного детектора через УНЧ1 подводятся к фильтрам низких ФНЧ и высоких ФВЧ частот, пропускающим полосы частот 200...800 и 800... 1400 Гц соответственно. Полоса 200...800 Гц содержит основную энергию телефонного сообщения, в полосу 800... 1400 Гц попадают в основном составляющие спектра шумов. Выходные колебания ФНЧ и ФВЧ выпрямляются детекторами Д1 и Д2, и постоянные напряжения, пропорциональные средним значениям амплитуд звукового сигнала и шума, поступают в схему сравнения их уровней ССУ, которая формирует напряжение, управляющее ключом подавителя шума. Логика работы ССУ такова. Если отношение уровней сигнала к шуму превосходит 3, ключ никакого влияния на УНЧ2 не оказывает. Если же сигнал превышает шум менее чем втрое, ключ ПШ КПШ формирует сигнал, запирающий УНЧ2, и на выход приемника ни сигнал, ни шум не проникают. Таким образом, ПШ обеспечивает нормальное функционирование приемника при достаточно высоком уровне сигнала. При низком уровне сигнала, когда разборчивость речи сильно понижается и чувствуется мешающее действие шума, утомляющего оператора, приемник запирается.