Дисконтирование – это процесс пересчета будущей стоимости капитала, денежных потоков или чистого дохода в настоящую. Ставка по которой производится дисконтирование, называется ставкой дисконтирования (ставкой дисконта).
Основная посылка, лежащая в основе понятия дисконтированного потока реальных денег, состоит в том, что деньги имеют временную цену, т. е. сумма денег, имеющаяся в наличии в настоящее время, обладает большой ценностью, чем такая же сумма в будущем. Эта разница может быть выражена как процентная ставка (р), характеризующая относительные изменения за определенный период (обычно равный году).
Предположим, что Ф(t) – номинальная цена будущего потока реальных денег в году t и Ф(0) – цена этого ожидаемого притока или оттока в настоящее время (текущая цена). Тогда (предполагая, что р – постоянная величина)
.Смысл проведения расчетов методом дисконтирования состоит в том, чтобы определить сумму, которую следует заплатить сегодня с тем, чтобы получить планируемую отдачу от инвестиций в будущем.
Для применения метода дисконтирования об объекте инвестирования необходимо знать следующие исходные данные: величиной инвестиции, планируемые величины денежных потоков или чистого дохода, норма дисконтирования, срок проекта.
При расчете денежных притоков и оттоков (кеш-фло) учитывается не только поступления денежных средств от операционной и инвестиционной деятельности, но и потоки от финансовых результатов.
Чистый поток наличности (ЧПН) определяется как разность между притоками и оттоками наличности от операционной (производственной) и инвестиционной деятельности минус издержки по финансированию проекта.
Чистый дисконтированный доход (ЧДД) определяется как сумма ЧПН за расчетный период.
Пример расчета куммулятивного ЧДД приведен в приложении 1. Здесь куммулятивный чистый поток реальных денег (строка 9) рассчитывается сложением куммулятивного чистого потока реальных денег за предыдущий период и чистого потока реальных денег за отчетный год. Например, куммулятивный чистый поток реальных денег в 2002 (5-м) году равен – 8300 млн. руб. (-10000 + 1700). ЧДД (строка 10)рассчитывается по формуле ЧД = строка 8 /
, где n – год с момента инвестирования, за который рассчитывается ЧДД. Куммулятивный ЧДД (строка 11) рассчитывается так же, как и куммулятивный чистый поток реальных денег.Коэффициент дисконтирования для приведения чистых денежных потоков к начальному периоду определяется по формуле
где Д – ставка дисконтирования (норма дисконта); t – год, за который дисконтируется чистый доход, начиная с момента инвестирования.
Значение коэффициентов дисконтирования
можно также получить из специальных таблиц дисконтированных величин.Норма дисконта отражать прибыль инвестора, которую он мог бы получить при инвестициях в другой проект. Она является минимальной нормой прибыли, ниже которой инвестор счел бы свои вложения не выгодными.
ЧДД характеризует интегральный эффект от реализации проекта и определяется как величина, полученная дисконтированием разницы между всеми готовыми оттоками и притоками реальных денег, накапливаемых в течении горизонта расчета проекта Т (при постоянной ставке процента отдельно для каждого года):
,где
– чистые потоки наличности в годы t = 1,2,3,…,T.Формулу для расчета ЧДД можно представить в следующем виде:
ЧДД = П(0) + П(1) ∙ К1 + П(2) ∙ К2 + … + П(Т) ∙ Кt.
Чистый дисконтированный доход как критерий для оценки эффективности инвестиций достаточно корректен и экономически обоснован. Во-первых, ЧДД учитывает изменение стоимости денег во времени. Во-вторых, ЧДД зависит только от прогнозируемого чистого денежного потока и альтернативной стоимости капитала. В-третьих, ЧДД имеет свойство аддитивности, т. е. ЧДД нескольких инвестиционных проектов можно складывать, так как все они выражены в сегодняшних деньгах.
ОПТИМИЗАЦИОННЫЕ МЕТОДЫ АНАЛИЗА И ПРИНЯТИЯ РЕШЕНИЯ В ЭКОНОМИКЕ.
Многие задачи, с которыми приходится сталкивается экономисту в повседневной практике при анализе хозяйственной деятельности предприятий, многовариантны. Так как не все варианты одинаково хороши, среди множества возможных приходится отыскивать оптимальный. Значительная часть подобных задач на протяжении долгого времени решалась исходя из здравого смысла и опыта. При этом не было никакой уверенности, что найденный вариант является наилучшим.
В современных условиях даже не значительные ошибки могут привести к огромным потерям. В связи с этим возникла необходимость привлечения к анализу и синтезу экономических систем оптимизационных экономико-математических методов и ЭВМ, что создает основу для принятия научно обоснованных решений. Такие методы объединяют в одну группу под общим названием «оптимизационные методы анализа и принятия решения в экономике».
Чтобы решить экономическую задачу математическими методами, прежде всего необходимо построить адекватную ей математическую модель, т.е. формализовать цель и условия задачи в виде математических функций, уравнений и (или) неравенств.
В общем случае математическая модель оптимизационной задачи имеет вид:
max (min) : Z = Z(x) (1.1.)
при ограничениях
, (1.2)
где R – отношения равенства, меньше или больше.
Если целевая функция (1.1) и функции, входящие в систему ограничений (1.2.), линейны относительно входящих в задачу неизвестных, такая задача называется задачей линейного программирования. Если же целевая функция (1.1.) или система ограничений (1.2.) не линейна, такая задача называется задачей линейного программирования.
В основном, на практике, задачи нелинейного программирования путем линеаризации сводятся к задаче линейного программирования. Особый практический интерес среди задач линейного программирования представляют задачи динамического программирования, которые из-за своей многоэтапности нельзя линеаризовать. Поэтому мы рассмотрим только эти два вида оптимизационных моделей, для которых в настоящее время имеется хорошее математическое и программное обеспечение.
Модели и методы решения задачи линейного программирования. Среди оптимизационных моделей и методов, используемых в теории экономического анализа, наиболее широкое распространение получили модели линейного программирования, которые решаются с помощью универсального приема –симплексного метода. Для современных ПЭВМ имеется ряд пакетов прикладных программ, которые позволяют решать любые задачи линейного программирования достаточно большой размерности. Одновременно с решением исходной задачи указанные пакеты прикладных программ могут решать двойственную задачу, решение которой позволяет проводить полный экономический анализ результатов решения исходной задачи.
Решение задачи линейного программирования на ПЭВМ рассмотрим на примере задачи об оптимальном раскрое материалов. По результатам решения проведем полный экономико-математический анализ с использованием теории двойственности.
Пусть имеется 200 кг полотна шириной 86 см и 300 кг - шириной 89 см. Из него необходимо раскроить и сшить мужские куртки 44, 46, 52 и 54 размеров. Они должны быть изготовлены
в следующем соотношении к размерам: 44 - 25,38%; 46 27,88%; 52 - 24,54%; 54 - 25,54%. Итого - 100%.