Интерпретацию выходной информации можно последить на примере корреляционного анализа фондоотдачи. Для построения на первом этапе отобраны следующие факторы:
Х1 – удельный вес машин и оборудования в общей стоимости основных производственных фондов, %;
Х2 – электрооворуженность рабочих, тыс. кВт∙ч;
Х3 – уровень использования производственной мощности, %.
Числовые характеристики анализируемых показателей представлены в таблице 1.3.
Число колебаний | Y | X1 | X2 | X3 |
1 2 3 4 5 | 1.47 1.25 1.82 1.45 1.75 | 32.00 30.58 34.12 32.17 33.78 | 34.08 35.89 36.93 32.31 34.91 | 88.98 87.27 95.00 88.17 90.89 |
40 | 1.79 | 33.96 | 40.25 | 92.40 |
Для оценки колеблемости показателей необходимы их статистические характеристики (Табл. 1.4.).
Данные таблицы показывают, что незначительным колебаниям подвержены факторы Х3 и Х1; средняя колеблемость присуща функции Y, значительная – фактору Х2. Однако коэффициенты вариации показателей не превышают 33%, что свидетельствует об однородности исходной информации.
Шифр показа-теля | Среднее Арифмети-ческое | Дисперсия | Стандартное отклонение | Асимме-трия | Эксцесс | Вариа- ции |
У1 Х1 Х2 Х3 | 1,641 33,178 36,164 92,061 | 0,06456 3,614 2,626 17,095 | 0,25409 1,9187 9,0899 4,1347 | -0,43878 0,48522 -0,96513 0,53833 | -0,72032 0,63515 0,96761 -1,2665 | 15,484 5,7831 25,135 4,4912 |
Коэффициенты асимметрии говорят о правосторонней асимметрии распределения рядов Х1 и Х3 и о левостороннем распределении рядов Х2 и У.
Величина эксцесса для всех показателей не превышает 3, что подтверждает низковершинное распределение вариационных рядов. Указанные коэффициенты интерпретируются геометрически.
Далее анализируется матрица коэффициентов парной корреляции (табл. 1.5.).
Шифр показателя | У | Х1 | Х2 | Х3 |
У Х1 Х2 Х3 | 1,0000 0,93778 0,0933618 0,92272 | 1,0000 0,093838 0,92602 | 1,0000 0,0786 | 1,0000 |
В данном примере наиболее тесная связь наблюдается между показателями фондоотдачи (У), идеального веса активной части фондов (Х1) и уровня загрузки производственной мощности (Х3). Парные коэффициенты корреляции соответственно составили 0,937778 и 0,92272.
Расчет парных коэффициентов корреляции выявил слабую связь фондоотдачи с электровооруженностью труда Х2 – 0,09361.
Гипотеза о наличии мультиколлинеарности отвергается, т. е. все показатели относительно независимы.
Для рассматриваемого примера вектор коэффициентов множественной детерминации равен: У = 0,9002; Х1 = 0,9043; Х2 = 0,0100; Х3 = 0,8820. Вектор интерпретируется следующим образом: изменение (вариация) функции (У) на 90,02% зависит от изменения избранных факторов-аргументов; фактора Х1 – на 90,43% от изменения функции (У) и остальных факторов и т. д.
В таблице 1.6. приведены частные коэффициенты корреляции. Они показывают связь каждой пары факторов в чистом виде при неизменном значении остальных параметров.
Шифр показателя | У | Х1 | Х2 | Х3 |
У Х1 Х2 Х3 | 1,0000 0,5713 0,02791 0,4148 | 1,0000 0,02994 0,4541 | 1,0000 0,03164 | 1,0000 |
Частные коэффициенты корреляции ниже парных. Это говорит о том, что чистое влияние факторов слабее, чем влияние оказываемое отдельными факторами во взаимодействии с остальными.
Статистическая значимость, надежность связи, выраженная частными коэффициентами корреляции, проверяется по t-критерию Стьюдента путем сравнения расчетного значения с табличными при заданной степени точности (Табл. 1.7.).
Шифр показателя | У | Х1 | Х2 | Х3 |
А | 1 | 2 | 3 | 4 |
У Х1 Х2 Х3 | 1,0000 4,1769 0,1675 2,7359 | 1,0000 0,1797 3,0583 | 1,0000 0,1899 | 1,0000 |
Обычно в практике экономических расчетов степень точности берется равной 5%, что соответствует вероятности р = 0,05. В таблице приведены критические значения t-критерия Стьюдента для вероятности р = 0,05 и 0,01 при различном числе степеней свободы, которые определяются как (n–1), где n – число наблюдений.
В нашем примере при числе степеней свободы 40 – 1 = 39 табличное значение tтабл. = 2,021. Расчетные значения t-критерия (первая графа таблицы) для факторов Х1 и Х3 оказались выше табличных, что свидетельствует о значимости этих факторов для анализируемой функции. Фактор Х2 как незначимый для функции должен быть исключен из дальнейших расчетов.
Далее на ЭВМ проводится шаговый анализ с постепенным включением в модель избранных факторов по критерию значимости. На каждом шаге рассматриваются уравнения регрессии, коэффициенты корреляции и детерминации, F-критерий, стандартная ошибка оценки и другие показатели. После каждого шага перечисленные оценочные показатели сравниваются с рассчитанными на предыдущем шаге. Уравнение регрессии будет тем точнее, чем ниже величина стандартной ошибки (табл. 1.8.).
№ шага | Ввод переменной | Уравнение регрессии | Множественные коэффициенты | Отношение | Стандартная ошибка оценки | |
Корреляции | Детерми- нации | |||||
I | X1 | У = -2,481 +0,1242 Х1 | 0.9378 | 0.8797 | 277.2 | 0.0893 |
II | X3 | У = -3,085+0,077 Х1 + + 0,0234 Х3+0,0002 Х2 | 0.9488 | 0.9001 | 166.7 | 0.0824 |
III | X2 | У = -3,091+0,0773 Х1+ + 0,0234 Х3+0,0002 Х2 | 0.9488 | 0.9002 | 108.3 | 0.0835 |
Если добавление последующих факторов не улучшает оценочные показатели, а иногда и ухудшает их, необходимо остановиться на том шаге, где показатели наиболее оптимальны.
Результаты шагового анализа представлены в Табл. 1.8. свидетельствуют о том, что сложившиеся взаимосвязи наиболее полно описывает двухфакторная модель, полученная на втором шаге: у = У = -3,085 = 0,0774 Х1 + 0,0234 Х3.