Смекни!
smekni.com

Экономико-математические методы анализа (стр. 2 из 8)

Связь между производительностью и фондовооруженностью труда можно выразить в виде уравнения прямой линии:

, где
- число наблюдений;
- постоянная величина, независимая от изменения данного фактора.

Для выяснения связи рассчитаем коэффициент корреляции по формуле:

Коэффициент корреляции по абсолютной величине может принимать значения в пределах от 0 до 1. Если между двумя показателями не существует связи, коэффициент равен 0, если связь тесная, - он близок к 1.

Если коэффициент корреляции равен 1, значит, результативный признак полностью зависит от признака-фактора, т. е. по существу корреляционная зависимость совпадает с функциональной. Следовательно, чем ближе коэффициент корреляции к 1, тем теснее связь между явлениями и наоборот.

Для нахождения неизвестных параметров a и b решим систему так называемых нормальных уравнений:

;
. Величина xy находится умножением значений х на y и последующим суммированием произведений.

Для исчисления величины

следует значения х возвести в квадрат и полученные результаты суммировать.

Числовые значения ху, х, у,

рассчитываются на основании фактических данных из табл.1.1.

В результате подстановки данных в систему уравнений получаем:

80,9 = 10а + 22,6b; 188,4 = 22,6а + 52,6b.

Отсюда а = +6,7; b = 0,912.

Значит, уравнение, представляющее связь между фондовооруженностью и производительностью труда работающих, имеет вид у(х) = 6,7 + 0,912х. Следовательно повышение фондовооруженности труда на 1000 руб. приводит к росту его производительности на 912 руб. Эти данные учитываются при перспективном и текущем планировании роста производительности труда.

Использование множественной корреляции в экономическом анализе. В зависимости от количества отобранных факторов различают парные и многофакторные модели. Из многофакторных используется: линейные

; степенные
; логарифмические
модели. Они удобны тем, что их параметры
экономически интерпретируется.

В экономических расчетах предпочтение отдается линейным моделям, что обусловлено следующими причинами:

1.Относительная простота и меньший объем вычислений ;

2.Массовые экономические процессы, как правило, подчиняются закону нормального распределения, которому свойственны линейные формы связи.

Факторы, включаемые в корреляционно-регрессивную модель, отбираются в несколько приемов: логический отбор в соответствии с экономическим содержанием; отбор существенных факторов по оценки их значимости по t-критерию Стьюдента либо F-критерию Фишера; последовательный отсев незначимых факторов. При расчетах множественной корреляции применяется степень точности 5%, что соответствует вероятности Р=0,05.

Корреляция рядов динамики имеет некоторые особенности. Кроме кратковременных колебаний (годовых, квартальных, месячных), в ряду имеется еще один компонент – общая тенденция в изменения показателей ряда (тренд). При этом имеет место автокорреляция – зависимость между последовательными (то есть соседними) значениями уровней динамического ряда.

Для проверки наличия автокорреляции в динамических рядах вычисляется критерий Дарбина – Уотсона

, где
и
- соответствующие уровни динамического ряда. Его значения находятся в пределах от 0 до 4. Если расчетные значения критерия близки к 2, значит, автокорреляция отсутствует; если dэ<0 - динамический ряд содержит автокорреляцию; если dэ = 4 – в динамическом ряду не существует автокорреляции.

Для определения выровненного ряда (тренда) с целью его последующего исключения чаще всего прибегают к механическому сглаживанию и аналитическому выравниванию методом наименьших квадратов.

Механическое сглаживание ведется с помощью скользящей, или подвижной средней. Этот способ состоит в вычислении каждой новой средней одного члена ряда слева и присоединении одного члена ряда слева и одного справа.

Кроме статистических характеристик (Табл.1.2) рассчитываются также их ошибки. Величина ошибки отражает диапазон, в котором находится та или иная статистическая характеристика.

Показатели

Их содержание и обозначение

Средне арифметическое Дисперсия Стандартное отклонение (средне-квадратическое) Асимметрия Экцесс Вариация Показывает среднее арифметическое значение y и последующих х в порядке их ввода
. Средний квадрат отклонений вариантов (х) от средней арифметической (
).
Является мерой вариации, т. е. колеблемости признака
. Вычисляется как средняя из отклонений вариантов от их средней арифметической. Представляет собой меру колеблемости. Коэффициент асимметрии Ка колеблется от -3 до +3. Если Ка>0, то асимметрия правосторонняя, если Ка<0, то левосторонняя, если Ка=0, то вариационный ряд считается симметричным. Крутость распределения, т. е. островершинность или плосковершинность кривой на графике. Если Е>3, то распределение островершинное, при Е<3 – низковершинное. Коэффициент вариации V – относительная величина (%), характеризующая колеблемость признака от среднего арифметического. Если V<10%, изменчивость вариационного ряда незначительна; изменчивость средняя если 10%≤V≤20%; если 20%≤V≤33% - значительна; если V≥33%, информация неоднородна и ее следует исключить из дальнейших расчетов или отбросить аномальные (нетипичные) наблюдения.

Матрица коэффициентов парной корреляции. Для измерения тесноты связи между факторами и результативным показателем исчисляют парные, частные и множественные коэффициенты корреляции. Они обладают следующими свойствами:

-1 ≤ r ≤1;

если r = 0, линейная корреляционная связь отсутствует;

если [r] = 1, между переменными х и у существует функциональная зависимость;

связь считается сильной, если [r] ≥ 0,7. При [r] ≤ 0,3 – связь слабая.

Парные коэффициенты рассчитываются для всевозможных пар переменных без учета влияния других факторов. Чтобы учесть взаимное влияние факторов, исчисляются частые коэффициенты, которые отличаются от первых тем, что выражают тесноту корреляционной зависимости между двумя признаками при устранении изменений, вызванных влиянием других факторов модели.

Матрица критериев некоррелированности необходима для выбора наиболее значимых факторов, чье совместное влияние формирует его величину. При этом исключению обычно подлежат факторы, которые при парном коррелировании друг с другом дают высокий линейный коэффициент, превышающий по абсолютной величине 0,85. Наличие такой связи между двумя факторами называют коррелиарностью, а между несколькими – мультиколлинеарностью. На основании данных матрицы машина отвергает или не отвергает гипотезу о мультиколлинеарности.

Коэффициенты множественной детерминации представляют собой квадрат коэффициента корреляции. Он показывает, на сколько процентов вариация результативного показателя зависит от влияния избранных факторов.

Вектор значений Фишера используется для оценки множественного коэффициента корреляции и уравнения регрессии. Расчетные значения вектора значений сравниваются с табличными.

Для оценки значимости факторов необходима матрица значений распределения Стьюдента. Расчетные значения здесь также сравниваются с табличными. После этого начинается шаговый регрессивный анализ. Его результатом становится уравнение регрессии

где а0 – свободный член уравнения; х1,х2,…,хn – факторы, определяющие результатный показатель в его единицах измерения.

Далее следует группа оценочных показателей уравнения регрессии в целом:

F – отношение Фишера для оценки множественного коэффициента корреляции и уравнения регрессии в целом; dэ –отношение Дарбина – Уотсона для определения наличия автокорреляции в рядах динамики; э – коэффициент эластичности – отношение изменения ( в процентах) одного признака при изменении на 1% другого. Для f(x) коэффициент эластичности обращается в э =

, где
– производная. Показатели эластичности вычисляются в статике и динамике; бета-коеффициенты и другие статистические характеристики, которые не интерпретируются с экономической точки зрения.