Один из источников загрязнения катодного алюминия — графитовые токоотводы, содержащие окись железа и кремния и постоянно соприкасающиеся с рафинированным алюминием. Если ток к катодному алюминию подводить непосредственно алюминиевыми шинами и применять инструмент из очень чистого графита, можно получать металл чистотой 99,999% по разности с определяемыми примесями (Fe, Si, Cu, Zn и Ti). B таком металле содержится в среднем, %: Si 0,0002; Fe 0,00032; Cu 0,0002; Zn 0,0002 и Ti 0,00005. Однако из-за технических трудностей такой способ подвода тока пока не нашел широкого промышленного применения.
Получение алюминия особой чистоты
Алюминий особой чистоты (марки A999) может быть получен тремя способами: зонной плавкой, дистилляцией через субгалогениды и электролизом алюминий-органических соединений. Из перечисленных способов получения алюминия особой чистоты практическое применение в СССР получил способ зонной плавки.
Принцип зонной плавки заключается в многократном прохождении расплавленной зоны вдоль слитка алюминия. По величине коэффициентов распределения К=Ств/Сж (где Ств — концентрация примеси в твердой и Сж — в жидкой фазе), которые в значительной мере определяют эффективность очистки от примесей, эти примеси могут быть разбиты на три группы. К первой группе относятся примеси, понижающие температуру плавления алюминия;ониимеют К<1, при зонной плавке концентрируются в расплавленной зоне и переносятся ею к конечной части слитка. К числу этих примесей принадлежат Ga, Sn, Be, Sb, Ca, Th, Fe, Co, Ni, Ce, Te, Ba, Pt, Au, Bi, Pb, Cd, In, Na, Mg, Cu, Si, Ge, Zn. Ко второй группе принадлежат примеси, повышающие температуру плавления алюминия; они характеризуются К>1 и при зонной плавке концентрируются в твердой (начальной) части слитка. К этим примесям относятся Nb, Ta, Cr, Ti, Mo, V. К третьей группе относятся примеси с коэффициентом распределения, очень близким к единице (Mn, Sc). Эти примеси практически не удаляются при зонной плавке алюминия.
Алюминий, предназначенный для зонной плавки, подвергают некоторой подготовке, которая заключается в фильтрации, дегазации и травлении. Фильтрация необходима для удаления из алюминия тугоплавкой и прочной окисной пленки, диспергированной в металле. Окись алюминия, присутствующая в расплавленном алюминии, может при его затвердевании создавать центры кристаллизации, что ведет к получению поликристаллического слитка и нарушению эффекта перераспределения примесей между твердым металлом и расплавленной зоной. Фильтрацию алюминия ведут в вакууме (остаточное давление 0,1-0,4 Па) через отверстие в дне графитового тигля диаметром 1,5-2 мм. Предварительную дегазацию алюминия перед зонной плавкой (также нагреванием в вакууме) проводят для предупреждения разбрызгивания металла при расплавлении зоны в случае проведения процесса в глубоком вакууме. Последняя стадия подготовки алюминия к зонной плавке — травление его поверхности смесью концентрированных соляной и азотной кислот.
Так как алюминий обладает значительной химической активностью и в качестве основного материала для контейнеров (лодочек) применяют особо чистый графит, то зонную плавку алюминия проводят в вакууме или в атмосфере инертного газа (аргон, гелий).
Зонной плавкой в вакууме обеспечивается большая чистота алюминия вследствие улетучивания части примесей при вакуумировании (магния, цинка, кадмия, щелочных и щелочноземельных металлов), а также исключается загрязнение очищенного металла примесями в результате применения защитных инертных газов. Зонную плавку алюминия в вакууме можно проводить при непрерывной откачке кварцевой трубы, куда помещают графитовую лодочку со слитком алюминия, а также в запаянных кварцевых ампулах, из которых предварительно откачивают воздух до остаточного давления примерно 1ּ10–3 Па.
Для создания расплавленной зоны на слитке алюминия при его зонной плавке может быть применен нагрев с помощью небольших печей сопротивления или же токов высокой частоты. Для электропитания печей электросопротивления не требуется сложной аппаратуры, печи просты в эксплуатации. Единственный недостаток этого метода нагрева — небольшое сечение слитка очищаемого алюминия.
Индукционный нагрев токами высокой частоты — идеальный способ создания расплавленной зоны на слитке при зонной плавке. Метод высокочастотного нагрева (помимо того, что он позволяет осуществить зонную плавку слитков больших сечений) имеет важное преимущество, заключающееся в том, что расплавленный металл непрерывно перемешивается в зоне; это облегчает диффузию атомов примеси от фронта кристаллизации в глубь расплава.
Впервые промышленное производство алюминия высокой чистоты зонной плавкой было освоено на Волховском алюминиевом заводе в 1965 г. на установке УЗПИ-3, разработанной ВАМИ. Эта установка была оснащена четырьмя кварцевыми ретортами с индукционным нагревом, при этом индукторы были подвижными, а контейнеры с металлом неподвижными. Производительность ее составляла 20 кг металла за цикл очистки. Впоследствии была создана и введена в промышленную эксплуатацию в 1972 г. на Волховском алюминиевом заводе более высокопроизводительная цельнометаллическая установка УЗПИ-4.
Эффективность очистки алюминия при зонной плавке может быть охарактеризована следующими данными. Если суммарное содержание примесей в электролитически рафинированном алюминии составляет (30÷60)ּ10–4%, то после зонной плавки оно снижается до (2,8÷3,2)ּ10–4%, т. е. в 15-20 раз. Это отвечает остаточному электросопротивлению алюминия ρ○ (при температуре жидкого гелия 4,2 К) соответственно (20÷40)ּ10–10 и (1,8÷2,1)ּ10–10 или чистоте 99,997—99,994 и 99,9997%. В табл. 1.4 (см. ниже) приведены данные радиоактивационного анализа о содержании некоторых примесей в зонно-очищенном алюминии и электролитически рафинированном. Эти данные свидетельствуют о сильном снижении содержания большинства примесей, хотя такие примеси, как марганец и скандий, при зонной плавке практически не удаляются.
В последние годы в ВАМИ разработана и опробована в промышленных условиях технология получения алюминия чистотой 99,9999% методом каскадной зонной плавки. Сущность способа каскадной зонной плавки заключается в том, что очистку исходного алюминия чистотой А999 ведут, последовательно повторяя циклы (каскады) зонной планки. При этом исходным материалом каждого последующего каскада служит средняя, наиболее чистая часть слитка, получаемого в результате предыдущего цикла очистки.
ТАБЛИЦА 1.4
СОДЕРЖАНИЕ ПРИМЕСЕЙ В ЭЛЕКТРОЛИТИЧЕСКИ РАФИНИРОВАННОМ И ЗОННООЧИЩЕННОМ АЛЮМИНИИ, ×10–4 %
Примесь | Исходный алюминий (электролитически рафинированный 99,993-99,994 %) | Алюминий после зонной плавки | |
графит, вакуум | алунд, воздух | ||
Медь | 1,9 | 0,02 | 0,08 |
Мышьяк | 0,15 | 0,0015 | 0,001 |
Сурьма | 1,2 | 0,03 | 0,02 |
Уран | 0,002 | — | — |
Железо | 3 | ≤0,2 | ≤0,3 |
Галий | 0,3 | 0,02 | 0,05 |
Марганец | 0,2—0,3 | 0,1—0,2 | 0,15 |
Скандий | 0,4—0,5 | 0,4—0,5 | 0,4—0,5 |
Иттрий | 0,02—0,04 | <<0,001 | <<0,001 |
Лютеций | 0,002—0,004 | <<0,0001 | <<0,0001 |
Гольмий | 0,005—0,01 | <<0,0001 | <<0,0001 |
Гадолиний | 0,02—0,04 | <<0,01 | <<0,01 |
Тербий | 0,003—0,006 | <<0,001 | <<0,001 |
Самарий | 0,05—0,01 | <<0,0001 | <<0,0001 |
Неодим | 0,1—0,2 | <<0,01 | <<0,01 |
Празеодим | 0,05—0,1 | <<0,001 | <<0,001 |
Церий | 0,3—0,6 | <<0,01 | <<0,01 |
Лантан | 0,01 | <<0,001 | <<0,001 |
Никель | 2,3 | — | <1 |
Кадмий | 3,5 | <<0,01 | 0,02—0,07 |
Цинк | 20 | <<0,05 | 1 |
Кобальт | 0,01 | <<0,01 | <<0,01 |
Натрий | 1—2 | <0,2 | <0,2 |
Калий | 0,05 | 0,01 | 0,01 |
Барий | 6 | — | — |
Хлор | 0,01 | <0,01 | <0,01 |
Фосфор | 3 | 0,04 | — |
Сера | 15 | 0,5—1,5 | — |
Углерод | 1—2 | — | 1—2 |
Примечание. Количества теллура, висмута, серебра, молибдена, хрома, циркония, кальция, стронция, рубидия, церия, индия, селена и ртути в алюминии после зонной плавки ниже чувствительности радиоактивного анализа. |
В табл. 1.5 (см. ниже) приведены результаты масс-спектрального анализа и измерения R293 К/R4,2 К алюминия, полученного каскадной зонной плавкой. Из приведенных данных можно сделать заключение, что чистота такого алюминия, определенная по разности с десятью основными примесями (Si, Fe, Mg, Mn, Ti, Cu, Cr, Zn, Na, и V), составляет >99,9999%. Этот вывод косвенно подтверждается величиной R293 К/R4,2 К, которая во всех образцах составляла >30ּ103.
Для получения металла чистотой 99,9999% достаточно провести два каскада зонной плавки (см. табл. 1.5). Дальнейшее увеличение числа каскадов не повышает чистоту алюминия, хотя и увеличивает общий выход металла чистотой 99,9999%.
Другим возможным процессом для получения алюминия особой чистоты является его дистилляция через субгалогениды, в частности через субфторид алюминия.
Давление насыщенных паров металлического алюминия недостаточно высоко, чтобы осуществить его непосредственную дистилляцию с практически приемлемыми скоростями. Однако при нагревании в вакууме (при 1000-1050°С) с AlF3 алюминий образует легколетучий субфторид AlF, который перегоняется в холодную зону (800°С), где вновь распадается (диспропорционирует) с выделением чистого алюминия: