Смекни!
smekni.com

Производство Алюминия (стр. 4 из 6)

На отечественных алюминиевых заводах при литье слитков алюминий, по­ступающий из миксера в кристаллизатор литейной машины, подвергают прос­тейшему виду рафинирования — фильтрации расплава через стеклосетку с ячей­ками размером от 0,6×0,6 до 1,7×1,7 мм. Этот метод позволяет очищать алюминий только от очень грубых окисных включений; более совершенен метод фильтрации расплава через стеклосетку в восходящем потоке. При таком способе фильтрования частицы окисных включений, сталкиваясь с сеткой, не захватываются потоком расплава, а осаждаются на дне литейного желоба.

Для одновременной очистки алюминия, как от неметаллических примесей, так и от водорода успешно применяется метод фильтрации через флюсовый фильтр в сочетании с продувкой азотом. В качестве флюса можно использо­вать кислый электролит алюминиевых электролизеров. В результате такой очистки содержание водорода в алюминии снижается с 0,22 до 0,16 см3 на 100 г металла.

В первичном алюминии, используемом для производства сплавов системы Al—Mg, содержание натрия не должно превышать 0,001 %. Это связано с тем, что присутствие натрия в этих сплавах ухудшает механические и другие экс­плуатационные свойства изделий, применяемых в ряде отраслей народного хо­зяйства.

Наиболее эффективным методом одновременного рафинирования алюминия от натрия, водорода и неметаллических примесей является продувка расплав­ленного металла газовой смесью азота с 2-10% хлора, вводимой в расплав в виде мелких пузырей с помощью специальных устройств. Этот способ ра­финирования позволяет снизить содержание натрия в алюминии до 0,0003—0,001% при расходе газовой смеси от 0,8 до 1,5 м3/т металла.

Расход электроэнергии на производство 1 т товарного алюминия из метал­ла-сырца при использовании электропечей составляет 150-200 кВтּч; безвоз­вратные потери металла на литейном переделе равны 1,5-5 % в зависимости от вида товарной продукции.

Получение алюминия высокой чистоты

Для получения алюминия высокой чистоты (марок А995—А95) первичный алю­миний технической чистоты электролитически рафинируют. Это позво­ляет снизить в алюминии содержание металлических и газообразных примесей и тем самым значительно повысить его электропроводность, пластичность, от­ражательную способность и коррозионную стойкость.

Электролитическое рафинирование алюминия осуществляют электролизом расплавленных солей по трехслойному способу. Сущность способа заключается в следующем. В рафинировочном электролизере имеются три расплавленных слоя. Нижний, наиболее тяжелый, лежит на токопроводящей подине и служит анодом; он называется анодным сплавом и представляет собой сплав рафини­руемого алюминия с медью, которую вводят для утяжеления слоя. Средний слой — расплавленный электролит; его плотность меньше плотности анодного сплава и выше плотности чистого рафинированного (катодного) алюминия, на­ходящегося над электролитом (верхний, третий жидкий слой).

При анодном растворении все примеси более электроположительные, чем алюминий (Fe, Si, Ti, Cu и др.), остаются в анодном сплаве, не переходя в электролит. Анодно растворяться будет только алюминий, который в форме ионов Al3+переходит в электролит: Al– 3e→ Al3+.

При электролизе ионы алюминия переносятся к катоду, на котором и раз­ряжаются: Al3+ + 3e→ Al. В результате на катоде накапливается слой расплав­ленного рафинированного алюминия.

Если в анодном сплаве присутствуют примеси более электроотрицательные, чем алюминий (например, Ba, Na, Mg, Ca), то они могут электрохимически растворяться на аноде вместе с алюминием и в виде ионов переходить в элек­тролит. Поскольку содержание электроотрицательных примесей в алюминии-сырце невелико, в заметном количестве в электролите они не накапливаются. Разряда этих ионов на катоде практически не происходит, так как их электродный потенциал электроотрицательнее алюминия.

В качестве электролита при электролитическом рафинировании алюминия в Советском Союзе и в большинстве стран применяют фторидно-хлоридный электролит, состав которого 55-60% BaCl2, 35-40% AlF4+NaF и 0-4% NaCl. Молярное отношение NaF : AlF3 поддерживают 1,5-2,0; температура плавления электролита 720-730°C; температура процесса электролиза около 800°C; плотность электролита 2,7 г/см3.

Анодный сплав готовят из первичного алюминия и чистой меди (99,90-99,95% Cu), которую вводят в металл в количестве 30-40%. Плотность жидкого анодного сплава такого состава 3-3,5 г/см3; плотность же чистого расплавленного катодного алюминия равна 2,3 г/см3. При таком соотношении плот­ностей создаются условия, необходимые для хорошего разделения трех рас­плавленных слоев.

В четверной системе Al—Cu—Fe—Si, к которой относится анодный сплав, об­разуется эвтектика с температурой плавления 520°C. Охлаждая анодный сплав, содержащий примеси железа и кремния в количествах выше эвтектических кон­центраций, можно выделить железо и кремний в твердую фазу в виде интер­металлических соединений FeSiAl5 и Cu2FeAl7. Так как температура анодного сплава в карманах электролизера на 30-40°C ниже температуры анодного сплава в рабочем пространстве ванны, в них (по мере накопления в анодном сплаве железа и кремния) будут выделяться твердые интерметаллические осадки. Периодически удаляя эти осадки, очищают анодный сплав (без его об­новления) от примесей железа и кремния. Так как в анодном сплаве концент­рируется галлий, то извлекаемые из электролизера осадки (30-40 кг на 1 т алюминия) могут служить источником получения этого металла.

Для электролитического рафинирования служат электролизеры, которые по конструкции напоминают электролизеры с обожженными анодами для электро­литического получения первичного алюминия, но имеют другое подключение по­люсов: подина служит анодом, а верхний ряд электродов — катодом. Совре­менные электролизеры для электролитического рафинирования алюминия рас­считаны на силу тока до 75 кА.

Ниже приведены основные технико-экономические показатели электролизе­ров за 1979 г., достигнутые отечественными (1, 2, 3) предприятиями.

Электрохимический выход по току, рассчитанный по вылитому из электро­лизера металлу, составляет 97-98%. Фактический же выход по току, рассчитанный по количеству товарного металла, составляет 92-96%.

Сила тока, кА 23,5 62,9 69,8*
Среднее напряжение, В 5,43 5,68 5,69
Выход по току, % 95,7 93,0 92,7
Расход электроэнергии постоянного тока, кВтּч/т 17 370 18 700 19 830
Суммарный электроэнергии переменного тока, кВтּч/т 18 670 19 590 20 780
Уровни, см
катодного алюминия 16,6 12,9 14,6
электролита 13,3 11,6 14,2
анодного сплава 40,1 29,5 30,0
Расходные коэффициенты, кг/т:
хлористый барий 40,5 41,5 27,0
криолит 27,7 21,0 16,5
фтористый алюминий 6,7 13,1 3,8
хлористый натрий 1,0 4,8
алюминий-сырец 1020 1028 1032
графит 11,9 11,5 16,6
медь 9,8 15,5 16,4
Выпуск алюминия высокой чистоты, % марок:
А995 47,8** 3,5 2,1
А99 30,4 67,1 54,2
А97 8,3 21,5 43,7
А95 10,4 7,9
ниже А95 3,1
* Показатели производства алюминия высокой чистоты.** Сортность по электролизерам без расшихтовки.

Основным фактором, снижающим выход по току, помимо прямых потерь тока на разряд более электроотрицательных ионов, потерь металла за счет его окисления и механических потерь алюминия, является работа электролизеров с выпуском несортового металла, который вновь возвращается в анодный сплав для последующего рафинирования. Эти периоды работы электролизеров имеют место при пуске электролизеров и нарушениях технологического режима.

Электролитическое рафинирование алюминия является очень энергоемким производством. Расход электроэнергии в переменном токе, включая энергию, затраченную на подготовку электролита и анодного сплава, работу вентиляционных устройств и транспортных средств, а также потери на преобразование пе­ременного тока в постоянный, составляет 18,5-21,0 тыс. кВтּч на 1 т алюминия. Энергетический к. п. д. рафинировочных электролизеров не превышает 5-7%, т. е. 93-95% энергии расходуется в виде потерь тепла, выделяемого в основном в слое электролита (примерно 80-85% от общего прихода тепла). Следовательно, основными путями дальнейшего снижения удельного расхода электроэнергии на электролитическое рафинирование алюминия являются совершен­ствование теплоизоляции электролизера (особенно верхней части конструк­ции) и снижение слоя электролита (уменьшение междуэлектродного рас­стояния).

Чистота алюминия, рафинированного по трехслойному методу, 99,995%; она определяет­ся по разности с пятью основными примесями — железом, крем­нием, медью, цинком и титаном. Количество получаемого металла такой марки может составлять 45-48% от общего выпуска (без его расшихтовки с более низкими, сортами).

Следует, однако, отметить, что в электролитически рафинированном алюминии содержатся в меньших количествах примеси других металлов, что сни­жает абсолютную чистоту такого алюминия. Радиоактивационный анализ поз­воляет обнаружить в электроли­тически рафинированном алюминии до 30 примесей, суммарное содержание которых примерно 60ּ10–4%. Следовательно, чистота рафинированного алюминия по разности с этими примесями состав­ляет 99,994%.

Помимо примесей, предусмотренных ГОСТом (см. табл. 1.1), в наиболее распространен­ной марке (А99) электролитически рафинированного алюминия содержится, %: Cr 0,00016; V 0,0001; Ga 0,0006; Pb 0,002; Sn 0,00005; Ca 0,002-0,003; Na 0,001-0,008; Mn 0,001-0,007; Mg 0,001-0,007; As<0,0001; Sb<0,00002; Bi<0,00001; Cd<0,000001; S 0,0007.