Предварительная нормализация повышает прочностные характеристики высаженных концов примерно на 10%, а характеристики пластичности – на 40-60%.
Нагрев токами высокой частоты, закалка в спреере. Установка для закалки состоит из индуктора для нагрева движущейся трубы под закалку. Нагретый участок трубы охлаждается в спреере вращающимся потоком воды, установленным непосредственно за индуктором. Отпуск закаленного участка трубы производится также путем нагрева токами высокой частоты во втором индукторе, находящемся за спреером. Труба при термообработке движется горизонтально со скоростью примерно 1 м/мин.
Для уменьшения осевого искривления труб последние приваривают друг к другу в непрерывную полосу.
Такой термической обработке подвергали обсадные трубы диаметром 168 и 141 мм с толщиной стенки 8-14 мм из стали марки 36Г2С. Скоростной нагрев проводили на частоте 2500 гц.
Температура нагрева под закалку составляла 850-950ºС, температура отпуска 500-725ºС в зависимости от марки стали и толщины стенки трубы.
После термической обработки значительно повышаются не только запас прочности труб, но их пластические свойства. Недостатком такой установки является низкая ее производительность.[2]
5.3.Термическая обработка концов труб
Недостатком муфтовых резьбовых соединений обсадных труб является ослабленное тело трубы в нарезке.
Одним из способов достижения равнопрочности является упрочнение концов самой трубы при помощи термической их обработки.
Технологию упрочнения концов труб ведут путем нагрева всей трубы с последующей закалкой концов в спреерной установке. В этом случае концы труб подвергают закалке, а всю остальную часть трубы – нормализации.
По другой технологии нагревают только концы труб с последующей их закалкой.
При нагреве под закалку только концов труб наблюдаются две переходные зоны: зона перехода от закалочного участка к нормализованному (температура выше Ас3) и зона с градиентом температур критического интервала и высокого отпуска. Вторая переходная зона характеризуется снижением прочностных свойств примерно на 5-12%, по отношению к исходным при одновременном повышении относительного удлинения и относительного сужения.[2]
6.Термомеханическая обработка обсадных труб
В последнее время получают развитие новые технологические процессы комбинированного термомеханического воздействия на структуру и свойства обсадных труб, позволяющие значительно улучшить их эксплуатационные характеристики и обеспечить существенную экономию металла в народном хозяйстве.
На линии для комбинированного высокотемпературного термомеханического упрочнения обсадных труб горячекатаные трубы-заготовки после прокатки на автоматстане поступают на входную сторону раскатных станов и прокатываются здесь до необходимого по технологии размера. Существующие раскатные станы в соответствии с результатами проведенных ранее исследований заменяются более мощными двухвалковыми с осевой выдачей раската для осуществления прокатки с обжатиями по толщине стенки до 20%(вместо 3-5%на существующих станах).
После раскатки трубы подвергают закалке в спрейерных охлаждающих устройствах, совмещенных с оборудованием выходной стороны раскатных станов. Трубы, имеющие температуру на выходе в раскатные станы, более низкую, чем задано по технологии ВТМО, после охлаждения автоматически исключаются от потока высокопрочных труб и сбрасываются в карман. Закаленные трубы с выходной стороны станов поступают на центральный рольганг и перекладывателем через устройство для слива воды направляются на выходной рольганг отпускной печи с шагающими балками (с поперечным перемещением труб). Эта печь (с газовым обогревом) имеет две технологические зоны: нагрева и выдержки. Топливо сжигают в специальных, вынесенных из рабочего пространства надсводовых топках с рециркуляцией разбавленных продуктов сгорания в рабочем пространстве печи. Конструкция шагающих балок предусматривает перекатывание труб не только на рабочем, но и на холостом ходу балок, что обеспечивает равномерный нагрев труб по периметру. Шагающие балки стационарные и не охлаждаются.
Далее нагретые до заданной температуры отпуска трубы поступают на рольганг выдачи, а затем в калибровочный стан. Клети этого стана нерегулируемые, с индивидуальным приводом. Стан предназначен для тёплой и горячей калибровки труб.
После калибровки трубы с температурой, близкой к температуре отпуска, подвергают тёплой правке на правильном стане и охлаждают на колёсном холодильнике. При охлаждении благодаря быстрому вращению труб искривление их по длине почти отсутствует. Поэтому для высокопрочных труб холодную правку, как обязательную технологическую операцию можно не предусматривать. В конце холодильника есть обводной рольганг перед станами холодной правки, по которому высокопрочные трубы направляются непосредственно для отделки. В таблице приведены показатели механических свойств металла труб после ВТМО.
Таблица 5
Механические свойства металла труб после ВТМО
Группа прочности по ГОСТ632-64 | Температура тепловой деформации,ºС | Временное сопротивление, кг/мм² | Предел текучести, кг/мм² | Относительное удлинение, % | Относительное сужение, % |
Сталь 10 | |||||
Л | 600 | 81,0 | 74,1 | 17,5 | 72,0 |
Сталь 36Г2С | |||||
М | 600 | 100,0 | 84,0 | 20,0 | 62,5 |
Внедрение новой технологии позволит улучшить качество труб, применить для их изготовления исходную заготовку из более дешёвого металла и снизить эксплуатационные затраты.[7]
7.Контроль качества труб после термической
и термомеханической обработки
С целью обеспечения высоких эксплуатационных свойств труб нефтяного сортамента при их изготовлении осуществляется тщательный пооперационный контроль геометрических размеров, механических свойств и состояния внутренней и наружной поверхностей.
Заключительной операцией технологического контроля обсадных труб является испытание внутренним гидравлическим давлением. Цель гидравлического испытания – проверка прочности тела трубы и герметичности резьбового соединения.
Применение закалки и отпуска в некоторых случаях вызывает появление дополнительных дефектов, обусловленных термической обработкой (закалочные трещины и др.). Поэтому в технологии производства высокопрочных труб особую важность, кроме гидравлических испытаний, приобретает контроль качества поверхностей трубы и особенно резьбовых концов. Наружные и внутренние дефекты значительно снижают сопротивление трубы действующим нагрузкам и могут служить причиной аварий.
Наиболее распространёнными видами контроля труб на отечественных и зарубежных заводах являются визуальный осмотр, а также контроль с помощью магнитного, ультразвукового методов и гамма-дефектоскопии.[2]
Литература:
[1]- Ю.А.Башнин, Б.К.Ушаков, А.Г.Секей, Технология термической обработки, М., Металлургия, 1986.
[2]- А.А.Шевченко, В.И.Стрижак, Производство труб для нефтяной промышленности, М., Металлургия, 1965.
[3]- А.А.Гайворонский, Крепление нефтяных и газовых скважин в США, Гостоптехиздат, 1962.
[4]- Ю.М.Матвеев, производство высокопрочных обсадных труб, Сталь, 1953, №10.
[5]-Металловедение и термическая обработка стали. Справочник. т.III, М.: Металлургия, 1983.
[6]-Б.П.Колесник, Механические свойства углеродистой и низколегированной трубной стали после нормализации с применением скоростного нагрева, Производство труб, сб. статей УкрНИТИ, вып. 9, Металлургиздат, 1963.
[7]-В.М.Янковский и др., Чёрная металлургия, Бюл. Научн.-техн. журн., 1976, №10, ст.41.