Медные руды, как правило, содержат такое количество примесей, что непосредственное получение из них меди экономически невыгодно. Поэтому в металлургии меди особенно важную роль играет флотационный способ обогащения руд, позволяющий использовать руды с очень небольшим содержанием меди.
Для получения меди из сульфидных руд обожженную руду сплавляют в шахтных или отражательных печах с кремнеземом и коксом. При этом большая часть железа переходит в шлак в виде силиката железа FeSiO3 , медь же превращается в сульфит Cu2S, который вместе с остающимися еще в руде сульфидом железа образует штейн, собирающийся на дне печи под слоем шлака.
Дальнейшая обработка штейна с целью удаления из него оставшегося железа ведётся в конверторах. Сквозь находящийся в конверторе расплавленный штейн, к которому добавлено необходимое количество песка, продувают воздух или, что более эффективно, кислород.
Химические процессы, происходящие в конверторе, довольно сложны. Находящийся в штейне сульфид железа превращается в закись железа и удаляется в виде силиката в шлаке:
2FeS+3O2=2FeO+2SO2
2FeO+2SiO2=2FeSiO3
Медь восстанавливается до металла. При этом, вероятно, происходят следующие реакции:
2Cu2S+3O2=2Cu2O+2SO2
2CuO+ Cu2+6Cu+ SO
Выделяющиеся при этих реакциях тепло поддерживает в конверторе температуру 1100-1200ºС и делает излишним расход топлива.
Вдувание воздуха продолжают до тех пор, пока не восстановится вся медь, о чём можно судить по характеру вырывающего из конвертора пламени. Расплавленную медь выпускают из конвектора в песчаные формы, где она и застывает в виде толстых пластин.
Получение титана
Титан очень распространен в природе; составляя 0,61 вес. % земной коры, он стоит впереди таких широко используемых в технике металлов, как медь, свинец и цинк.
Минералы, содержащие титан, находятся в природе повсеместно. Важнейшими из них являются: титаномагнетиты FeTiO3 ·nFeO4, ильменит FeTiO3, сфен CaTiSiO5 и рутил TiO2. Несмотря на большую распространенность титана в природе, его до последнего времени относили к редким элементам и он находил, лишь весьма ограниченное применение. Однако за последнее время этот элемент стал предметам обширных и обстоятельных исследований в большинстве стран мира.
Такое внимание титану объясняется тем, что исследование свойств чистого титана, впервые полученного в 1925 г., показало, что в чистом виде этот металл весьма пластичен и легко поддается механической обработке. Он хорошо куется и прокатывается в листы и даже в фольгу. Это, в сочетании с высокой коррозионной устойчивостью и жаропрочностью, делает титан ценнейшим конструкционным материалом для многих областей новой техники, в частности для авиации и ракетостроения.
Сущность получения металлического титана заключается в восстановлении четыреххлористого титана или окислов титана или натриетермическим способом. В результате значительного количество исследований разработан ряд способов получения чистого титана. Из них наибольшее значение имеет способ, заключающихся в переводе титановой руды в чистую двуокись титана с последующим ее хлорированием в присутствии угля или молотого графита:
TiO2 + 2C12 + 2C TiC14 + 2COОбразовавшийся четыреххлористый титан восстанавливают металлическим
магнием или натрием:
TiC14 + 2Mg Ti + 2MgC12 TiC14 + 4Na Ti + 4NaC14Металлический титан плавится при 1725ºС; плотность его равна 4,54 г\см.