Смекни!
smekni.com

Порошковая металлургия и свойства металлических порошков (стр. 4 из 6)

Элементы механики и реологии деформируемого тела. Элементы механики и реологии деформируемого тела возможность феноменологического описания многих закономерностей прессования и спекания, но важным является и микроскопический подход к этим процессам, основанный на концепциях твердого тела.

Общие сведения о механизмах процесса массопереноса. Изменение плотности при прессовании и спекании обусловлено многими процессами, различными по своей природе: взаимным скольжением элементов структуры относительно друг друга, пластической деформацией, вязким течением, диффузионными явлениями. Большинство из этих процессов имеет термоактивационный характер, а пластическая деформация, кроме того, и пороговый. Преимущественным механизмом диффузии в твердых телах считается вакансионный, и энергия активации представляется состоящей из слагаемых, зависящих от параметров образования и движения вакансий. В процессах спекания и горячего прессования важную роль играет течение вещества – ползучесть. При нагреве вязкого тела, в том числе и порошкового, происходят и рекрестализационные процессы, связанные с переходом мкроструктуры в более стабильное состояние.

Основы процесса уплотнения порошкообразных материалов. Рассматриваемый класс материалов, как и все твердые тела, в зависимости от условий нагружения и деформации может проявлять упругие, пластические и вязкие свойства. Пластическое разрушение возникает в теле при достижении в нем предельного состояния. Пластическая деформация тел, сопровождающаяся их хрупким разрушением, не может быть рассмотрена как процесс, лежащий в основе механизма уплотнения порошкового материала. Таким образом, можно заключить, что кинетика процесса уплотнения полностью определяется условиями пластической деформации сжимаемого пористого тела, механические свойства которого зависят от технологических свойств исходного порошкового материала и его плотности в некоторый момент времени.

Пластическое разрушение. Предельное состояние можно интерпретировать как состояние, предшествующее разрушению. Пластическое течение и хрупкое разрушение – называют состоянием пластического разрушения.

Экспериментальное исследование механических свойств пористых сжимаемых тел. Схема “сдвига” при достаточной простоте реализации позволяет контролировать суммарную величину нагрузок, приложенных к телу, и величину перемещений сдвигаемых объемов брикетов в двух взаимно перпендикулярных направлениях. Установки трехосного нагружения, несмотря на наличие некоторого распределения по объему тела, дают более точные значения напряжений. Цель эксперимента состояла в определении величин сжимающих и сдвигающих усилий, сочетание которых приводит к пластическому разрушению образца и выявлению условий перехода деформации хрупкого разрушения в развитое пластическое течение материала, когда должна наблюдаться соответствующая сдвигу деформация сжатия материала и увеличение его плотности. Без пластической деформации материала невозможно его уплотнение;

Развитие в сжимаемом теле пластических деформаций требует определенного сочетания касательных и сжимаемых напряжений на поверхностях скольжения. Увеличение плотности пористой среды не только зависит от величины сжимающих нагрузок и их изменения, но и является функцией полученной телом пластической деформации.

Прессование представляет собой формование металлического порошка в пресс – форме под воздействием давления. При насыпании порошка в форму поверхностные слои частиц воспринимают контактную нагрузку.

Энергия прессования расходуется на преодоление трения между частицами, внешнего трения и на деформирование частиц. Все виды прессования имеют собственный механизм уплотнения, подчиняются различным закономерностям, но для всех них одним из наиболее важных вопросов является выяснение зависимости плотности порошкового тела от давления. Сложность физических процессов , наблюдаемых в течение уплотнения порошковых материалов в закрытых пресс – формах, не позволила до сих пор построить всеобщую физико – математическую теорию прессования. Поэтому до сих пор нет аналитического выражения, которое было бы универсальным для прессования различных материалов и широкого интервала давлений. Общим недостатком почти всех уравнений прессования является то, что они не учитываются реальной граничной плотности, достижимой в данном порошке. В НГТУ использован энергетический подход к проблеме уплотнения пористого тела при динамическом и статическом горячем прессовании.

Боковое давление при прессовании. При приложении давления деформация порошковой массы может происходить за счет нормальной деформации контактов частиц и их относительного сдвига. При увеличении давления прессования происходит рост площадок взаимных контактов. Важной характеристикой прессования является коэффициент бокового давления ξ, представляющий собою отношение бокового давления к давлению прессования Ν и качественно характеризующий пластичность уплотняемого материала.

Распределение плотности в спрессованных брикетах. Внешнее трение прессуемого порошка о стенки пресс – формы определяет усилие, необходимое для выталкивания брикта после его прессования и называемое давлением выталкивания. Давление выталкивания всегда меньше потерь давления на трение порошка о стенки пресс – формы, что связано с изменением объема спрессованного брикета после снятия давления. Разрыв контактов между частицами на большом протяжении может вызвать разрушение целостности прессовок, называемоерасслоем.

Структурные изменения при прессовании. Структурные изменения в брикетах при прессовании определяются двумя группами факторов: уменьшением прироста и превращениями в структуре материала частиц. Можно полагать что прессование в конечном счете осуществляется за счет снижения общего запаса энергии порошковой системы. В традиционных понятиях все свойства порошковых материалов являются функцией контактного сечения, а площадь этого сечения определяется значением нормального к нему сжимающего напряжения.

4.Спекание порошковых материалов.

Определение спекания. Спекание порошков является третьим способом получения поликристаллических тел самой различной химической природы: металлов и их соединений, оксидов, ковалентных кристаллов. Спекание есть нагрев и выдержка порошковой формовки при температуре ниже точки плавления основного компонента с целью обеспечения заданных механических и физико–химических свойств.

Свойства твердых тел и связь их с дисперсностью. При изучении механизма и кинетики процессов, происходящих в спекающемся пористом теле, необходимо иметь в виду особенности фазового равновесия, поскольку “ фаза вещества ” и “фаза пустоты ” имеют такие размеры, когда эффекты, обусловленные искривленностью границы между сосуществующими фазами, могут оказаться значительными. Основной причиной различия свойств дисперсных и макроскопических объектов является повышенная кривизна поверхностей первых, приводящая к появлению давлений на границе раздела твердых дисперсных фаз, различию давлений паров металлов над поверхностями с разной кривизной и соответствующих плотностей вакансий.

Непороговая и пороговая ползучесть. Спекание пористого тела сопровождается ползучестью вещества. При прочих равных условиях кинетика уплотнения зависит от механизма ползучести, т. е. способности материала медленно и непрерывно деформироваться под действием постоянной нагрузки. При температуре достаточно высокой для того чтобы термически активируемое диффузионное перемещение атомов осуществлялось с надлежащей скоростью, следует различать непороговые механизмы, которые могут определять деформирование при малых напряжениях σ, и пороговые, проявляющиеся при напряжениях, превосходящих некоторое предельное значение σ*. Общим признаком всех механизмов непороговой ползучести (НП) является направлены поток вакансий под влиянием разности их химического потенциала.

Величина порогового напряжения σ* определяется конкретными механизмами торможения, размножения и движения дислокаций.

Геометрия контактной области. Строгое рассмотрение задачи о геометрии контактной области даже в простейших случаях контакта между двумя сферами и сферой и плоскостью сопряжено с большими трудностями в связи с необходимостью учета перераспределения вещества. Геометрическая активность в определенном пространственном распределении вакансий в контактной зоне, зависит от начального сплющивания при прессовании, при спекании уменьшается и определяется в основном радиусом кривизны поверхности контакта.

Движущие силы спекания термодинамическая целесообразность переноса вещества в области контактного перешейка обусловлена уменьшением общей поверхности и поверхностной энергии системы. Давление пара над изогнутой поверхностью может быть определено с помощью уравнения Лапласа. Вторая сила связана с наличием зависимости между концентрацией вакансий и кривизной. Вблизи изолированной поры концентрация вакансий выше равновесной возрастает с уменьшением пор. Концентрация вакансий в решетке вблизи межзерных границ, находящихся под напряжением σ , отличается от равновесной.

Непороговые механизмы формирования контакта при припекании одноименных твердых тел. В обдасти высоких температур, когда диффузионная подвижность атомов и упругость паров велика, преобладабт термоактивируемые процессы. При спекании центры частиц могут оставаться на месте или сближаться. Сближение центров при переносе массы непороговыми механизмами наблюдается в случае, если сток атомов расположен в объеме частиц, а не на их поверхности.