Смекни!
smekni.com

Литьё цветных металлов в металлические формы - кокили (стр. 2 из 8)

Эффективность производства и область применения. Эффек­тивность производства отливок в кокиль, как, впрочем, и других способов литья, зависит от того, насколько полно и правильно инженер-литейщик использует преимущества этого процесса, учи­тывает его особенности и недостатки в условиях конкретного про­изводства.

Ниже приведены преимущества литья в кокиль на основе

производственного опыта.

1. Повышение производительности труда в результате исклю­чения трудоемких операций смесеприготовления, формовки, очист­ки отливок от пригара. Поэтому использование литья в кокили, по данным различных предприятий, позволяет в 2—3 раза повы­сить производительность труда в литейном цехе, снизить капиталь­ные затраты при строительстве новых цехов и реконструкции существующих за счет сокращения требуемых производственных площадей, расходов на оборудование, очистные сооружения, уве­личить съем отливок с 1 м площади цеха.

2. Повышение качества отливки, обусловленное использова­нием металлической формы, повышение стабильности показателей качества: механических свойств, структуры, плотности, шерохова­тости, точности размеров отливок.

3. Устранение или уменьшение объема- вредных для здоровья работающих операций выбивки форм, очистки отливок от пригара, их обрубки, общее оздоровление и улучшение условий труда, меньшее загрязнение окружающей среды.

4. Механизация и автоматизация процесса изготовления от­ливки, обусловленная многократностью использования кокиля. При литье в кокиль устраняется сложный для автоматизации процесс изготовления литейной формы. Остаются лишь сборочные операции: установка стержней, соединение частей кокиля и их крепление перед заливкой, которые легко автоматизируются. Вме­сте с тем устраняется ряд возмущающих факторов, влияю­щих па качество отливок при лигье в песчаные формы, таких, как влажность, прочность, газопроницаемость формовочной смеси, что делает процесс литья в кокиль более управляемым. Для получения отливок заданного качества легче осуществить автоматическое регулирование технологических параметров процесса. Автомати­зация процесса позволяет улучшить качество отливок, повысить эффективность производства, изменить характер труда литейщи­ка-оператора, управляющего работой таких комплексов.

Литье в кокили имеет и недостатки.

1. Высокая стоимость кокиля, сложность и трудоемкость его

изготовления.

2. Ограниченная стойкость кокиля, измеряемая числом годных отливок, которые можно получить в,данном кокиле (см. табл. 2.3). От стойкости кокиля зависит экономическая эффективность про­цесса особенно при литье чугуна и стали, и поэтому повышение стойкости кокиля является одной из важнейших проблем техно­логии кокильного литья этих сплавов.

3. ложность получения отливок с поднутрениями, для выпол­нения которых необходимо усложнять конструкцию формы — делать дополнительные разъемы, использовать вставки, разъем­ные металлические или песчаные стержни.

4. Отрицательное влияние высокой интенсивности охлаждения расплава в кокиле по сравнению с песчаной формой. Это ограни­чивает возможность получения тонкостенных протяженных отли­вок, а в чугунных отливках приводит к отбелу поверхностного слоя, ухудшающему обработку резанием; вызывает необходимость термической обработки отливок.

5. Неподатливый кокиль приводит к появлению в отливках напряжений, а иногда к трещинам.

Преимущества и недостатки этого способа определяют р а-циональную область его использования: экономически целесообразно вследствие высокой стоимости кокилей применять этот способ литья только в серийном или массовом производстве. Серийность при литье чугуна должна составлять более 20 крупных , или более 400 мелких отливок в год, а при литье алюминиевых — не менее 400—700 отливок в год.

Эффективность литья в кокильобычно определяют в сравне­нии с литьем в песчаные формы. Экономический эффект достигается благодаря устранению формовочной смеси, повышению ка­чества отливок, их точности, уменьшению припусков на обработку, снижению трудоемкости очистки и обрубки отливок, механизации и автоматизации основных операций и, как следствие, повышению производительности и улучшению условий труда.

Таким образом, литье в кокиль с полным основанием следует отнести к трудо- и материалосберегающим, малооперационным и малоотходным технологическим процессам, улучшающим усло­вия труда в литейных цехах и уменьшающим вредное воздействие на окружающую среду.

КОКИЛИ

Общие сведения

В производстве используют кокили различных конструкций.

Классификация конструкций кокилей. В зависимости от распо­ложения поверхности разъема кокили бывают: неразъемные (вытряхные); с вертикальной плоскостью разъема; с горизонталь­ной плоскостью разъема; со сложной (комбинированной) поверх­ностью разъема.

Неразъемные, или вытряхные, кокили (рис. 2.3) применяют в тех случаях, когда конструкция отливки позволяет удалить ее вместе с литниками из полости кокиля без его разъема. Обычно эти отливки имеют достаточно простую конфигурацию.

Кокили с вертикальной плоскостью разъема (см. рис. 2.1) состоят из двух или более полуформ. Отливка может располагаться целиком в одной из половин кокиля, в двух половинах кокиля, одновременно в двух половинах кокиля и в ниж­ней плите.

Кокили с горизонтальным разъемом (рис. 2.4) применяют преимущественно для простых по конфигурации, а также крупногабаритных отливок, а в отдельных случаях для отливок достаточно сложной конфигурации.

Кокили со сложной (комбинированной) поверхностью разъема (рис. 2.5) используют для изготовления отливок сложной конфигурации.

По числу рабочих полостей (гнезд), определяющих возможность одновременного, с одной заливки, изготовления того или иного количества отливок, кокили разделяют на одноместные (см. рис. 2.1) и многоместные (см. рис. 2.4).

В зависимости от способа охлаждения разли­чают кокили с воздушным (естественным и принудительным), с жидкостным (водяным, масляным) и с комбинированным (водо-воздушным и т. д.) охлаждением. Воздушное охлаждение исполь­зуют для малотеплонагруженных кокилей. Водяное охлаждение используют обычно для высокотеплонагруженных кокилей, а так­же для повышения скорости охлаждения отливки или ее отдельных частей. На рис. 2.6 представлен кокиль с воздушным охлажде­нием. Ребра на стенках кокиля увеличивают поверхность сопри­косновения охладителя — воздуха — с кокилем и соответственно теплоотвод. На рис. 2.7 представлен водоохлаждаемый кокиль для отливки барабана шахтной лебедки из высокопрочного чугуна. Вода подается раздельно в обе половины кокиля, нижнюю плиту и верхнюю крышку.

Элементы конструкции кокилей

Кокиль, как и любая литейная форма,— ответственный и точ­ный инструмент. Технические требования к кокилям оговорены ГОСТом. Конструктивное исполнение основных элементов коки­лей — полуформ, плит, металлических стержней, вставок — зави­сит от конфигурации отливки, а также от того, предназначена ли форма для установки на кокильную машину.

К основным конструктивным элементам кокилей относят:

формообразующие элементы — половины кокилей, ниж­ние плиты (поддоны), вставки, стержни; конструктивные элементы — выталкиватели, плиты выталкивателей, запираю­щие механизмы, системы нагрева и охлаждения кокиля и отдель­ных его частей, вентиляционную систему, центрирующие штыри и втулки.

Корпус кокиля или его половины выполняют коробчаты­ми, с ребрами жесткости. Ребра жесткости на тыльной, нерабочей стороне кокиля делают невысокими, толщиной 0,7—0,8 толщины стенки кокиля, сопрягая их галтелями с корпусом. Толщина стенки кокиля зависит от состава заливаемого сплава и его тем­пературы, размеров и толщины стенки отливки, материала, из которого изготовляется кокиль, конструкции кокиля. Толщина стенки кокиля должна быть достаточной, чтобы обеспечить задан­ный режим охлаждения отливки, достаточную жесткость кокиля и минимальное его коробление при нагреве теплотой залитого расплава, стойкость против растрескивания.

Размеры половин кокиля должны позволять размещать его на плитах кокильной машины. Для крепления на плитах машины кокиль имеет приливы.

Стержни в кокилях могут быть песчаными и металли­ческими.

Песчаные стержни для кокильных отливок должны обладать пониженной газотворностью и повышенной поверхностной проч­ностью. Первое требование обусловлено трудностями удаления газов из кокиля; второе — взаимодействием знаковых частей стержней с кокилем, в результате чего отдельные песчинки могут попасть в полость кокиля и образовать засоры в отливке. Стерж­невые смеси и технологические процессы изготовления песчаных стержней могут быть различными — по горячим ящикам (сплош­ные и оболочковые стержни), из холоднотвердеющих смесей и т. д.